Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37812025

ABSTRACT

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Osteosarcoma/genetics , Whole Genome Sequencing , Genomics , Bone Neoplasms/genetics , Recurrence , DNA Copy Number Variations , Mutation
2.
Nat Genet ; 55(6): 1022-1033, 2023 06.
Article in English | MEDLINE | ID: mdl-37169874

ABSTRACT

Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.


Subject(s)
Neoplasm Recurrence, Local , Neuroblastoma , Humans , Neoplasm Recurrence, Local/genetics , Neuroblastoma/genetics , Clonal Evolution , Mutation , Neoplasm Metastasis
3.
Blood Adv ; 7(15): 3862-3873, 2023 08 08.
Article in English | MEDLINE | ID: mdl-36867579

ABSTRACT

Genomic profiling during the diagnosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification, and treatment decisions. Patients for whom diagnostic screening fails to identify disease-defining or risk-stratifying lesions are classified as having B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) of paired tumor-normal samples. For 52 patients with B-other, we compared the WGS findings with data from clinical and research cytogenetics. WGS identified a cancer-associated event in 51 of 52 patients, including an established subtype defining genetic alterations that were previously missed with standard-of-care (SoC) genetics in 5 of them. Of the 47 true B-other ALL, we identified a recurrent driver in 87% (41). A complex karyotype via cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r and IGK::BCL2). For a subset of 31 cases, we integrated the findings from RNA sequencing (RNA-seq) analysis to include fusion gene detection and classification based on gene expression. Compared with RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes; however, RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrated that WGS can identify clinically relevant genetic abnormalities missed with SoC testing as well as identify leukemia driver events in virtually all cases of B-other ALL.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adult , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Mutation , Whole Genome Sequencing , Abnormal Karyotype
4.
Nat Commun ; 13(1): 4622, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941135

ABSTRACT

Clinical recommendations for Acute Myeloid Leukemia (AML) classification and risk-stratification remain heavily reliant on cytogenetic findings at diagnosis, which are present in <50% of patients. Using comprehensive molecular profiling data from 3,653 patients we characterize and validate 16 molecular classes describing 100% of AML patients. Each class represents diverse biological AML subgroups, and is associated with distinct clinical presentation, likelihood of response to induction chemotherapy, risk of relapse and death over time. Secondary AML-2, emerges as the second largest class (24%), associates with high-risk disease, poor prognosis irrespective of flow Minimal Residual Disease (MRD) negativity, and derives significant benefit from transplantation. Guided by class membership we derive a 3-tier risk-stratification score that re-stratifies 26% of patients as compared to standard of care. This results in a unified framework for disease classification and risk-stratification in AML that relies on information from cytogenetics and 32 genes. Last, we develop an open-access patient-tailored clinical decision support tool.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Cytogenetic Analysis , Flow Cytometry/methods , Induction Chemotherapy/methods , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual
5.
Blood ; 139(19): 2931-2941, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35007321

ABSTRACT

The goal of therapy for patients with essential thrombocythemia (ET) and polycythemia vera (PV) is to reduce thrombotic events by normalizing blood counts. Hydroxyurea (HU) and interferon-α (IFN-α) are the most frequently used cytoreductive options for patients with ET and PV at high risk for vascular complications. Myeloproliferative Disorders Research Consortium 112 was an investigator-initiated, phase 3 trial comparing HU to pegylated IFN-α (PEG) in treatment-naïve, high-risk patients with ET/PV. The primary endpoint was complete response (CR) rate at 12 months. A total of 168 patients were treated for a median of 81.0 weeks. CR for HU was 37% and 35% for PEG (P = .80) at 12 months. At 24 to 36 months, CR was 20% to 17% for HU and 29% to 33% for PEG. PEG led to a greater reduction in JAK2V617F at 24 months, but histopathologic responses were more frequent with HU. Thrombotic events and disease progression were infrequent in both arms, whereas grade 3/4 adverse events were more frequent with PEG (46% vs 28%). At 12 months of treatment, there was no significant difference in CR rates between HU and PEG. This study indicates that PEG and HU are both effective treatments for PV and ET. With longer treatment, PEG was more effective in normalizing blood counts and reducing driver mutation burden, whereas HU produced more histopathologic responses. Despite these differences, both agents did not differ in limiting thrombotic events and disease progression in high-risk patients with ET/PV. This trial was registered at www.clinicaltrials.gov as #NCT01259856.


Subject(s)
Polycythemia Vera , Thrombocythemia, Essential , Thrombosis , Disease Progression , Humans , Hydroxyurea/adverse effects , Interferon-alpha/adverse effects , Polycythemia Vera/drug therapy , Polycythemia Vera/genetics , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/genetics , Thrombosis/chemically induced , Thrombosis/prevention & control
6.
Clin Cancer Res ; 28(8): 1614-1627, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35078859

ABSTRACT

PURPOSE: Therapy-related myelodysplastic syndrome and acute leukemias (t-MDS/AL) are a major cause of nonrelapse mortality among pediatric cancer survivors. Although the presence of clonal hematopoiesis (CH) in adult patients at cancer diagnosis has been implicated in t-MDS/AL, there is limited published literature describing t-MDS/AL development in children. EXPERIMENTAL DESIGN: We performed molecular characterization of 199 serial bone marrow samples from 52 patients treated for high-risk neuroblastoma, including 17 with t-MDS/AL (transformation), 14 with transient cytogenetic abnormalities (transient), and 21 without t-MDS/AL or cytogenetic alterations (neuroblastoma-treated control). We also evaluated for CH in a cohort of 657 pediatric patients with solid tumor. RESULTS: We detected at least one disease-defining alteration in all cases at t-MDS/AL diagnosis, most commonly TP53 mutations and KMT2A rearrangements, including involving two novel partner genes (PRDM10 and DDX6). Backtracking studies identified at least one t-MDS/AL-associated mutation in 13 of 17 patients at a median of 15 months before t-MDS/AL diagnosis (range, 1.3-32.4). In comparison, acquired mutations were infrequent in the transient and control groups (4/14 and 1/21, respectively). The relative risk for development of t-MDS/AL in the presence of an oncogenic mutation was 8.8 for transformation patients compared with transient. Unlike CH in adult oncology patients, TP53 mutations were only detectable after initiation of cancer therapy. Last, only 1% of pediatric patients with solid tumor evaluated had CH involving myeloid genes. CONCLUSIONS: These findings demonstrate the clinical relevance of identifying molecular abnormalities in predicting development of t-MDS/AL and should guide the formation of intervention protocols to prevent this complication in high-risk pediatric patients.


Subject(s)
Cancer Survivors , Leukemia, Myeloid, Acute , Neuroblastoma , Adult , Bone Marrow/pathology , Child , Clone Cells , Humans , Leukemia, Myeloid, Acute/genetics , Neuroblastoma/pathology
7.
NEJM Evid ; 1(7): EVIDoa2200008, 2022 Jul.
Article in English | MEDLINE | ID: mdl-38319256

ABSTRACT

MDS Molecular International Prognostic Scoring SystemSamples from over 2500 patients with MDS were profiled for gene mutations and used to develop the International Prognostic Scoring System-Molecular (IPSS-M). TP53multihit, FLT3 mutations, and MLLPTD were identified as top genetic predictors of adverse outcomes. IPSS-M improves prognostic discrimination across all clinical end points versus prior versions.

8.
BMC Bioinformatics ; 21(1): 549, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256603

ABSTRACT

BACKGROUND: The widespread adoption of high throughput technologies has democratized data generation. However, data processing in accordance with best practices remains challenging and the data capital often becomes siloed. This presents an opportunity to consolidate data assets into digital biobanks-ecosystems of readily accessible, structured, and annotated datasets that can be dynamically queried and analysed. RESULTS: We present Isabl, a customizable plug-and-play platform for the processing of multimodal patient-centric data. Isabl's architecture consists of a relational database (Isabl DB), a command line client (Isabl CLI), a RESTful API (Isabl API) and a frontend web application (Isabl Web). Isabl supports automated deployment of user-validated pipelines across the entire data capital. A full audit trail is maintained to secure data provenance, governance and ensuring reproducibility of findings. CONCLUSIONS: As a digital biobank, Isabl supports continuous data utilization and automated meta analyses at scale, and serves as a catalyst for research innovation, new discoveries, and clinical translation.


Subject(s)
Biological Specimen Banks , Databases, Factual , Humans , Internet , Reproducibility of Results , Software , User-Computer Interface
9.
Blood Adv ; 4(20): 5246-5256, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33104796

ABSTRACT

Myeloproliferative neoplasms (MPN) that have evolved into accelerated or blast phase disease (MPN-AP/BP) have poor outcomes with limited treatment options and therefore represent an urgent unmet need. We have previously demonstrated in a multicenter, phase 1 trial conducted through the Myeloproliferative Neoplasms Research Consortium that the combination of ruxolitinib and decitabine is safe and tolerable and is associated with a favorable overall survival (OS). In this phase 2 trial, 25 patients with MPN-AP/BP were treated at the recommended phase 2 dose of ruxolitinib 25 mg twice daily for the induction cycle followed by 10 mg twice daily for subsequent cycles in combination with decitabine 20 mg/m2 for 5 consecutive days in a 28-day cycle. Nineteen patients died during the study follow-up. The median OS for all patients on study was 9.5 months (95% confidence interval, 4.3-12.0). Overall response rate (complete remission + incomplete platelet recovery + partial remission) was 11/25 (44%) and response was not associated with improved survival. We conclude that the combination of decitabine and ruxolitinib was well tolerated, demonstrated favorable OS, and represents a therapeutic option for this high-risk patient population. This trial was registered at www.clinicaltrials.gov as #NCT02076191.


Subject(s)
Blast Crisis , Pyrazoles , Blast Crisis/drug therapy , Decitabine/therapeutic use , Humans , Nitriles , Pyrazoles/therapeutic use , Pyrimidines , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...