Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 633(8029): 417-425, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198650

ABSTRACT

Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.


Subject(s)
Macrophages , Tuberculosis, Pulmonary , Tumor Necrosis Factors , Adult , Female , Humans , Male , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Homozygote , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/cytology , Inflammation/immunology , Interferon-gamma/immunology , Loss of Function Mutation , Lung/cytology , Lung/drug effects , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/pathology , Mycobacterium tuberculosis/immunology , Phenotype , Reactive Oxygen Species/metabolism , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Respiratory Burst , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/genetics , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factors/deficiency , Tumor Necrosis Factors/genetics , Adolescent , Young Adult
2.
J Clin Immunol ; 44(7): 163, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008214

ABSTRACT

BACKGROUND: Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016. METHODS: We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans). RESULTS: We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans. CONCLUSIONS: We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.


Subject(s)
Antibodies, Neutralizing , Autoantibodies , Cryptococcosis , Cryptococcus gattii , Cryptococcus neoformans , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Autoantibodies/blood , Autoantibodies/immunology , Male , Colombia , Female , Adult , Cryptococcus gattii/immunology , Middle Aged , Cryptococcus neoformans/immunology , Cryptococcosis/immunology , Cryptococcosis/diagnosis , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Retrospective Studies , HIV Seronegativity/immunology , Young Adult , Aged
3.
Res Sq ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38313298

ABSTRACT

Background: Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Autoantibodies (auto-Abs) neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera from Colombian patients with non-HIV related cryptococcosis in a retrospective national cohort collected from 1997 to 2016. Methods: We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs in 30 HIV (-) adults presenting cryptococcosis (13 by C. gattii, and 17 by C. neoformans). Results: We detected auto-Abs neutralizing GM-CSF in the plasma of 9 out of 13 (69%) patients infected with C. gattii and 1 out of 17 (6%) patients with C. neoformans. Conclusions: We report ten Colombian patients with cryptococcosis due to auto-Abs neutralizing GM-CSF. Nine of the ten patients were infected with C. gattii, and only one with C. neoformans.

4.
J Clin Immunol ; 43(5): 921-932, 2023 07.
Article in English | MEDLINE | ID: mdl-36821021

ABSTRACT

BACKGROUND: Cryptococcosis is a potentially life-threatening fungal disease caused by encapsulated yeasts of the genus Cryptococcus, mostly C. neoformans or C. gattii. Cryptococcal meningitis is the most frequent clinical manifestation in humans. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) have recently been discovered in otherwise healthy adult patients with cryptococcal meningitis, mostly caused by C. gattii. We hypothesized that three Colombian patients with cryptococcal meningitis caused by C. neoformans in two of them would carry high plasma levels of neutralizing auto-Abs against GM-CSF. METHODS: We reviewed medical and laboratory records, performed immunological evaluations, and tested for anti-cytokine auto-Abs three previously healthy HIV-negative adults with disseminated cryptococcosis. RESULTS: Peripheral blood leukocyte subset levels and serum immunoglobulin concentrations were within the normal ranges. We detected high levels of neutralizing auto-Abs against GM-CSF in the plasma of all three patients. CONCLUSIONS: We report three Colombian patients with disseminated cryptococcosis associated with neutralizing auto-Abs against GM-CSF. Further studies should evaluate the genetic contribution to anti-GM-CSF autoantibody production and the role of the GM-CSF signaling pathway in the immune response to Cryptococcus spp.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Meningitis, Cryptococcal , Adult , Humans , Granulocyte-Macrophage Colony-Stimulating Factor , Meningitis, Cryptococcal/diagnosis , Autoantibodies , Colombia , Cryptococcosis/diagnosis
5.
J Clin Immunol ; 38(7): 794-803, 2018 10.
Article in English | MEDLINE | ID: mdl-30264381

ABSTRACT

PURPOSE: CARD9 deficiency is an inborn error of immunity that predisposes otherwise healthy humans to mucocutaneous and invasive fungal infections, mostly caused by Candida, but also by dermatophytes, Aspergillus, and other fungi. Phaeohyphomycosis are an emerging group of fungal infections caused by dematiaceous fungi (phaeohyphomycetes) and are being increasingly identified in patients with CARD9 deficiency. The Corynespora genus belongs to phaeohyphomycetes and only one adult patient with CARD9 deficiency has been reported to suffer from invasive disease caused by C. cassiicola. We identified a Colombian child with an early-onset, deep, and destructive mucocutaneous infection due to C. cassiicola and we searched for mutations in CARD9. METHODS: We reviewed the medical records and immunological findings in the patient. Microbiologic tests and biopsies were performed. Whole-exome sequencing (WES) was made and Sanger sequencing was used to confirm the CARD9 mutations in the patient and her family. Finally, CARD9 protein expression was evaluated in peripheral blood mononuclear cells (PBMC) by western blotting. RESULTS: The patient was affected by a large, indurated, foul-smelling, and verrucous ulcerated lesion on the left side of the face with extensive necrosis and crusting, due to a C. cassiicola infectious disease. WES led to the identification of compound heterozygous mutations in the patient consisting of the previously reported p.Q289* nonsense (c.865C > T, exon 6) mutation, and a novel deletion (c.23_29del; p.Asp8Alafs10*) leading to a frameshift and a premature stop codon in exon 2. CARD9 protein expression was absent in peripheral blood mononuclear cells from the patient. CONCLUSION: We describe here compound heterozygous loss-of-expression mutations in CARD9 leading to severe deep and destructive mucocutaneous phaeohyphomycosis due to C. cassiicola in a Colombian child.


Subject(s)
Ascomycota , CARD Signaling Adaptor Proteins/genetics , Genetic Predisposition to Disease , Heterozygote , Invasive Fungal Infections , Mutation , Phaeohyphomycosis/epidemiology , Phaeohyphomycosis/etiology , Age Factors , Age of Onset , Ascomycota/genetics , Ascomycota/immunology , Biomarkers , Child, Preschool , Colombia/epidemiology , Computational Biology/methods , DNA Mutational Analysis , Female , Humans , Immunohistochemistry , Immunophenotyping , Magnetic Resonance Imaging , Pedigree , Phaeohyphomycosis/diagnosis , Phaeohyphomycosis/immunology , Phenotype , Tomography, X-Ray Computed , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL