Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Sport Nutr Exerc Metab ; 32(5): 342-349, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35477899

ABSTRACT

The purpose of this study was to compare a wearable microfluidic device and standard absorbent patch in measuring local sweating rate (LSR) and sweat chloride concentration ([Cl-]) in elite basketball players. Participants were 53 male basketball players (25 ± 3 years, 92.2 ± 10.4 kg) in the National Basketball Association's development league. Players were tested during a moderate-intensity, coach-led practice (98 ± 30 min, 21.0 ± 1.2 °C). From the right ventral forearm, sweat was collected using an absorbent patch (3M Tegaderm™ + Pad). Subsequently, LSR and local sweat [Cl-] were determined via gravimetry and ion chromatography. From the left ventral forearm, LSR and local sweat [Cl-] were measured using a wearable microfluidic device and associated smartphone application-based algorithms. Whole-body sweating rate (WBSR) was determined from pre- to postexercise change in body mass corrected for fluid/food intake (ad libitum), urine loss, and estimated respiratory water and metabolic mass loss. The WBSR values predicted by the algorithms in the smartphone application were also recorded. There were no differences between the absorbent patch and microfluidic patch for LSR (1.25 ± 0.91 mg·cm-2·min-1 vs. 1.14 ±0.78 mg·cm-2·min-1, p = .34) or local sweat [Cl-] (30.6 ± 17.3 mmol/L vs. 29.6 ± 19.4 mmol/L, p = .55). There was no difference between measured and predicted WBSR (0.97 ± 0.41 L/hr vs. 0.89 ± 0.35 L/hr, p = .22; 95% limits of agreement = 0.61 L/hr). The wearable microfluidic device provides similar LSR, local sweat [Cl-], and WBSR results compared with standard field-based methods in elite male basketball players during moderate-intensity practices.


Subject(s)
Basketball , Wearable Electronic Devices , Chlorides/analysis , Humans , Lab-On-A-Chip Devices , Male , Microfluidics , Sweat/chemistry , Sweating
2.
Sci Transl Med ; 13(587)2021 03 31.
Article in English | MEDLINE | ID: mdl-33790027

ABSTRACT

The concentration of chloride in sweat remains the most robust biomarker for confirmatory diagnosis of cystic fibrosis (CF), a common life-shortening genetic disorder. Early diagnosis via quantitative assessment of sweat chloride allows prompt initiation of care and is critically important to extend life expectancy and improve quality of life. The collection and analysis of sweat using conventional wrist-strapped devices and iontophoresis can be cumbersome, particularly for infants with fragile skin, who often have insufficient sweat production. Here, we introduce a soft, epidermal microfluidic device ("sweat sticker") designed for the simple and rapid collection and analysis of sweat. Intimate, conformal coupling with the skin supports nearly perfect efficiency in sweat collection without leakage. Real-time image analysis of chloride reagents allows for quantitative assessment of chloride concentrations using a smartphone camera, without requiring extraction of sweat or external analysis. Clinical validation studies involving patients with CF and healthy subjects, across a spectrum of age groups, support clinical equivalence compared to existing device platforms in terms of accuracy and demonstrate meaningful reductions in rates of leakage. The wearable microfluidic technologies and smartphone-based analytics reported here establish the foundation for diagnosis of CF outside of clinical settings.


Subject(s)
Cystic Fibrosis , Sweat , Chlorides , Cystic Fibrosis/diagnosis , Cystic Fibrosis/therapy , Humans , Infant , Quality of Life , Smartphone
4.
Adv Healthc Mater ; 10(4): e2000722, 2021 02.
Article in English | MEDLINE | ID: mdl-32989913

ABSTRACT

Eccrine sweat contains a rich blend of electrolytes, metabolites, proteins, metal ions, and other biomarkers. Changes in the concentrations of these chemical species can indicate alterations in hydration status and they can also reflect health conditions such as cystic fibrosis, schizophrenia, and depression. Recent advances in soft, skin-interfaced microfluidic systems enable real-time measurement of local sweat loss and sweat biomarker concentrations, with a wide range of applications in healthcare. Uses in certain contexts involve, however, physical impacts on the body that can dynamically deform these platforms, with adverse effects on measurement reliability. The work presented here overcomes this limitation through the use of microfluidic structures constructed in relatively high modulus polymers, and designed in geometries that offer soft, system level mechanics when embedded low modulus elastomers. Analytical models and finite element analysis quantitatively define the relevant mechanics of these systems, and serve as the basis for layouts optimized to allow robust operation in demanding, rugged scenarios such as those encountered in football, while preserving mechanical stretchability for comfortable, water-tight bonding to the skin. Benchtop testing and on-body field studies of measurements of sweat loss and chloride concentration under imposed mechanical stresses and impacts demonstrate the key features of these platforms.


Subject(s)
Microfluidics , Sweat , Electrolytes , Reproducibility of Results , Skin
5.
Sci Adv ; 6(50)2020 12.
Article in English | MEDLINE | ID: mdl-33310859

ABSTRACT

Advanced capabilities in noninvasive, in situ monitoring of sweating rate and sweat electrolyte losses could enable real-time personalized fluid-electrolyte intake recommendations. Established sweat analysis techniques using absorbent patches require post-collection harvesting and benchtop analysis of sweat and are thus impractical for ambulatory use. Here, we introduce a skin-interfaced wearable microfluidic device and smartphone image processing platform that enable analysis of regional sweating rate and sweat chloride concentration ([Cl-]). Systematic studies (n = 312 athletes) establish significant correlations for regional sweating rate and sweat [Cl-] in a controlled environment and during competitive sports under varying environmental conditions. The regional sweating rate and sweat [Cl-] results serve as inputs to algorithms implemented on a smartphone software application that predicts whole-body sweating rate and sweat [Cl-]. This low-cost wearable sensing approach could improve the accessibility of physiological insights available to sports scientists, practitioners, and athletes to inform hydration strategies in real-world ambulatory settings.

6.
Lab Chip ; 20(23): 4391-4403, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33089837

ABSTRACT

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.


Subject(s)
Biosensing Techniques , Sweat , Electronics , Humans , Lab-On-A-Chip Devices , Microfluidics , Skin
7.
Proc Natl Acad Sci U S A ; 117(45): 27906-27915, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106394

ABSTRACT

Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.


Subject(s)
Biosensing Techniques/instrumentation , Microfluidics/methods , Sweat/chemistry , Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Electric Impedance , Equipment Design/instrumentation , Equipment Design/methods , Fluorometry , Humans , Immunoassay , Lab-On-A-Chip Devices , Skin/chemistry , Wearable Electronic Devices
8.
Lab Chip ; 20(1): 84-92, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31776526

ABSTRACT

Eccrine sweat is a rich and largely unexplored biofluid that contains a range of important biomarkers, from electrolytes, metabolites, micronutrients and hormones to exogenous agents, each of which can change in concentration with diet, stress level, hydration status and physiologic or metabolic state. Traditionally, clinicians and researchers have used absorbent pads and benchtop analyzers to collect and analyze the biochemical constituents of sweat in controlled, laboratory settings. Recently reported wearable microfluidic and electrochemical sensing devices represent significant advances in this context, with capabilities for rapid, in situ evaluations, in many cases with improved repeatability and accuracy. A limitation is that assays performed in these platforms offer limited control of reaction kinetics and mixing of different reagents and samples. Here, we present a multi-layered microfluidic device platform with designs that eliminate these constraints, to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.


Subject(s)
Alcohol Oxidoreductases/metabolism , Ammonia/analysis , Ethanol/analysis , Horseradish Peroxidase/metabolism , Lab-On-A-Chip Devices , Sweat/chemistry , Ammonia/metabolism , Ethanol/metabolism , Healthy Volunteers , Humans , Kinetics , Sweat/metabolism
9.
Sci Adv ; 5(1): eaav3294, 2019 01.
Article in English | MEDLINE | ID: mdl-30746477

ABSTRACT

Wearable sweat sensors rely either on electronics for electrochemical detection or on colorimetry for visual readout. Non-ideal form factors represent disadvantages of the former, while semiquantitative operation and narrow scope of measurable biomarkers characterize the latter. Here, we introduce a battery-free, wireless electronic sensing platform inspired by biofuel cells that integrates chronometric microfluidic platforms with embedded colorimetric assays. The resulting sensors combine advantages of electronic and microfluidic functionality in a platform that is significantly lighter, cheaper, and smaller than alternatives. A demonstration device simultaneously monitors sweat rate/loss, pH, lactate, glucose, and chloride. Systematic studies of the electronics, microfluidics, and integration schemes establish the key design considerations and performance attributes. Two-day human trials that compare concentrations of glucose and lactate in sweat and blood suggest a potential basis for noninvasive, semi-quantitative tracking of physiological status.


Subject(s)
Biosensing Techniques/instrumentation , Colorimetry/methods , Lab-On-A-Chip Devices , Microfluidics/methods , Skin/metabolism , Sweat/chemistry , Wearable Electronic Devices , Bioelectric Energy Sources , Chlorides/analysis , Glucose/analysis , Healthy Volunteers , Humans , Hydrogen-Ion Concentration , Lactic Acid/analysis , Male
10.
ACS Sens ; 4(2): 379-388, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30707572

ABSTRACT

Real-time measurements of the total loss of sweat, the rate of sweating, the temperature of sweat, and the concentrations of electrolytes and metabolites in sweat can provide important insights into human physiology. Conventional methods use manual collection processes (e.g., absorbent pads) to determine sweat loss and lab-based instrumentation to analyze its chemical composition. Although such schemes can yield accurate data, they cannot be used outside of laboratories or clinics. Recently reported wearable electrochemical devices for sweat sensing bypass these limitations, but they typically involve on-board electronics, electrodes, and/or batteries for measurement, signal processing, and wireless transmission, without direct means for measuring sweat loss or capturing and storing small volumes of sweat. Alternative approaches exploit soft, skin-integrated microfluidic systems for collection and colorimetric chemical techniques for analysis. Here, we present the most advanced platforms of this type, in which optimized chemistries, microfluidic designs, and device layouts enable accurate assessments not only of total loss of sweat and sweat rate but also of quantitatively accurate values of the pH and temperature of sweat, and of the concentrations of chloride, glucose, and lactate across physiologically relevant ranges. Color calibration markings integrated into a graphics overlayer allow precise readout by digital image analysis, applicable in various lighting conditions. Field studies conducted on healthy volunteers demonstrate the full capabilities in measuring sweat loss/rate and analyzing multiple sweat biomarkers and temperature, with performance that quantitatively matches that of conventional lab-based measurement systems.


Subject(s)
Colorimetry/instrumentation , Lab-On-A-Chip Devices , Skin , Sweat/chemistry , Temperature , Biomarkers/analysis , Humans , Limit of Detection , Mechanical Phenomena
11.
Integr Biol (Camb) ; 7(11): 1423-31, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26325525

ABSTRACT

The migration of T-cell subsets within peripheral tissues is characteristic of inflammation and immunoregulation. In general, the lymphocyte migratory response is assumed directional and guided by local gradients of chemoattractants and/or chemorepellents. However, little is known about how cells explore their tissue environment, and whether lymphocyte activation may influence speed and exploratory patterns of migration. To probe migration patterns by T-cells we designed a microfluidic maze device that replicates critical features of a tissue-like microenvironment. We quantified the migration patterns of unstimulated and mitogen-activated human T-cells at single cell resolution and found significant differences in exploration within microfluidic mazes. While unstimulated lymphocytes migrated in a directed manner, activated T-cells migrated through large areas of the mazes in an exploratory pattern in response to the chemoattractants RANTES (CCL5) and IP-10 (CXCL10). The analysis of migration enabled by the microfluidic devices help develop new methods for determining how human circulating T-cells function in vivo to seek out antigens in health and disease states.


Subject(s)
Chemotaxis, Leukocyte , Microfluidics , T-Lymphocytes/cytology , Anti-Inflammatory Agents/chemistry , Antigens/chemistry , Cells, Cultured , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Lymphocyte Activation , Microfluidic Analytical Techniques
12.
Adv Mater ; 27(9): 1593-9, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25640006

ABSTRACT

A layer-by-layer gelatin nanocoating is presented for use as a tunable, dual response biomaterial for the capture and release of circulating tumor cells (CTCs) from cancer patient blood. The entire nanocoating can be dissolved from the surface of microfluidic devices through biologically compatible temperature shifts. Alternatively, individual CTCs can be released through locally applied mechanical stress.


Subject(s)
Cell Separation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Nanostructures , Neoplastic Cells, Circulating , Biocompatible Materials/chemistry , Biopsy, Fine-Needle , Breast Neoplasms/blood , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Separation/methods , Cell Survival , Equipment Design , Gelatin/chemistry , Humans , Lung Neoplasms/blood , Lung Neoplasms/genetics , Male , Materials Testing , Microfluidic Analytical Techniques/methods , Models, Theoretical , Nanostructures/chemistry , Neoplastic Cells, Circulating/chemistry , Prostatic Neoplasms/blood , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Stress, Mechanical , Temperature
13.
Lab Chip ; 15(2): 549-556, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25412288

ABSTRACT

After more than 50 years of debates, the role of spatial and temporal gradients during cell chemotaxis is still a contentious matter. One major challenge is that when cells move in response to a heterogeneous chemical environment they are exposed to both spatial and temporal concentration changes. Even in the presence of perfectly stable chemical gradients, moving cells experience temporal changes of concentration simply by moving between locations with different chemical concentrations in a heterogeneous environment. Thus, the effects of the spatial and temporal stimuli cannot be dissociated and studied independently, hampering progress towards understanding the mechanisms of cell chemotaxis. Here we employ microfluidic and other engineering tools to build a system that accomplishes a function analogous to a treadmill at the cellular scale, holding a moving cell at a specified, unchanging location in a chemical gradient. Using this system, we decouple the spatial and temporal gradients around moving human neutrophils and find that temporal gradients are necessary for the directional persistence of human neutrophils during chemotaxis. Our results suggest that temporal chemoattractant changes are important during neutrophil migration and should be taken into account when deciphering the signalling pathways of cell chemotaxis.


Subject(s)
Microfluidic Analytical Techniques/methods , Neutrophils/cytology , Cell Movement , Cells, Cultured , Chemotaxis , Fluorescein-5-isothiocyanate/chemistry , Humans , Microfluidic Analytical Techniques/instrumentation , Neutrophils/chemistry , Neutrophils/physiology
14.
Integr Biol (Camb) ; 4(3): 259-69, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22314635

ABSTRACT

Cancer epithelial cells often migrate away from the primary tumor to invade into the surrounding tissues. Their migration is commonly assumed to be directed by pre-existent spatial gradients of chemokines and growth factors in the target tissues. Unexpectedly however, we found that the guided migration of epithelial cells is possible in vitro in the absence of pre-existent chemical gradients. We observed that both normal and cancer epithelial cells can migrate persistently and reach the exit along the shortest path from microscopic mazes filled with uniform concentrations of media. Using microscale engineering techniques and biophysical models, we uncovered a self-guidance strategy during which epithelial cells generate their own guiding cues under conditions of biochemical confinement. The self-guidance strategy depends on the balance between three interdependent processes: epidermal growth factor (EGF) uptake by the cells (U), the restricted transport of EGF through the structured microenvironment (T), and cell chemotaxis toward the resultant EGF gradients (C). The UTC self-guidance strategy can be perturbed by inhibition of signalling through EGF-receptors and appears to be independent from chemokine signalling. Better understanding of the UTC self-guidance strategy could eventually help devise new ways for modulating epithelial cell migration and delaying cancer cell invasion or accelerating wound healing.


Subject(s)
Cell Movement/physiology , Epidermal Growth Factor/physiology , Epithelial Cells/physiology , Animals , Biological Transport, Active , Cell Line, Tumor , Chemotaxis , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Microfluidic Analytical Techniques , Models, Biological , Neoplasm Invasiveness/physiopathology , Systems Biology , Tumor Microenvironment , Wound Healing/physiology
15.
Nat Commun ; 1: 96, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20981024

ABSTRACT

Remarkable sensitivity and exquisite frequency selectivity are hallmarks of mammalian hearing, but their underlying mechanisms remain unclear. Cochlear insults and hearing disorders that decrease sensitivity also tend to broaden tuning, suggesting that these properties are linked. However, a recently developed mouse model of genetically altered hearing (Tectb(-/-)) shows decreased sensitivity and sharper frequency selectivity. In this paper, we show that the Tectb mutation reduces the spatial extent and propagation velocity of tectorial membrane (TM) travelling waves and that these changes in wave propagation are likely to account for all of the hearing abnormalities associated with the mutation. By reducing the spatial extent of TM waves, the Tectb mutation decreases the spread of excitation and thereby increases frequency selectivity. Furthermore, the change in TM wave velocity reduces the number of hair cells that effectively couple energy to the basilar membrane, which reduces sensitivity. These results highlight the importance of TM waves in hearing.


Subject(s)
Extracellular Matrix Proteins/metabolism , Hearing/physiology , Sound , Tectorial Membrane/metabolism , Tectorial Membrane/physiology , Animals , Extracellular Matrix Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains
16.
Integr Biol (Camb) ; 2(11-12): 639-47, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20676444

ABSTRACT

The directional migration of human neutrophils in classical chemotaxis assays is often described as a "biased random walk" implying significant randomness in speed and directionality. However, these experiments are inconsistent with in vivo observations, where neutrophils can navigate effectively through complex tissue microenvironments towards their targets. Here, we demonstrate a novel biomimetic assay for neutrophil chemotaxis using enclosed microfluidic channels. Remarkably, under these enclosed conditions, neutrophils recapitulate the highly robust and efficient navigation observed in vivo. In straight channels, neutrophils undergo sustained, unidirectional motion towards a chemoattractant source. In more complex maze-like geometries, neutrophils are able to select the most direct route over 90% of the time. Finally, at symmetric bifurcations, neutrophils split their leading edge into two sections and a "tug of war" ensues. The competition between the two new leading edges is ultimately resolved by stochastic, symmetry-breaking behavior. This behavior is suggestive of directional decision-making localized at the leading edge and a signaling role played by the cellular cytoskeleton.


Subject(s)
Chemotaxis, Leukocyte/physiology , Microfluidic Analytical Techniques/instrumentation , Models, Biological , Neutrophils/physiology , Biomimetic Materials , Cytoskeleton/physiology , Humans , In Vitro Techniques , Signal Transduction , Stochastic Processes
17.
Proc Natl Acad Sci U S A ; 104(42): 16510-5, 2007 Oct 16.
Article in English | MEDLINE | ID: mdl-17925447

ABSTRACT

Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process, but its mechanical function remains unclear. Here we show that the TM supports traveling waves that are an intrinsic feature of its visco-elastic structure. Radial forces applied at audio frequencies (2-20 kHz) to isolated TM segments generate longitudinally propagating waves on the TM with velocities similar to those of the BM traveling wave near its best frequency place. We compute the dynamic shear storage modulus and shear viscosity of the TM from the propagation velocity of the waves and show that segments of the TM from the basal turn are stiffer than apical segments are. Analysis of loading effects of hair bundle stiffness, the limbal attachment of the TM, and viscous damping in the subtectorial space suggests that TM traveling waves can occur in vivo. Our results show the presence of a traveling wave mechanism through the TM that can functionally couple a significant longitudinal extent of the cochlea and may interact with the BM wave to greatly enhance cochlear sensitivity and tuning.


Subject(s)
Cochlea/physiology , Models, Biological , Sound , Tectorial Membrane/physiology , Animals , Elasticity , Mice , Mice, Inbred Strains , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...