Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(8): e0160736, 2016.
Article in English | MEDLINE | ID: mdl-27500935

ABSTRACT

Psychological stress can exacerbate inflammatory bowel disease. However, the mechanisms underlying how psychological stress affects gut inflammation remain unclear. Here, we focused on the relationship between changes in the microbial community of mucosa-associated commensal bacteria (MACB) and mucosal immune responses induced by chronic psychological stress in a murine model of ulcerative colitis. Furthermore, we examined the effect of probiotic treatment on exacerbated colitis and MACB composition changes induced by chronic psychological stress. Repeated water avoidance stress (rWAS) in B6-Tcra-/- mice severely exacerbated colitis, which was evaluated by both colorectal tissue weight and histological score of colitis. rWAS treatment increased mRNA expression of UCN2 and IFN-γ in large intestinal lamina propria mononuclear cells (LI-LPMC). Interestingly, exacerbated colitis was associated with changes in the microbial community of MACB, specifically loss of bacterial species diversity and an increase in the component ratio of Clostridium, revealed by 16S rRNA gene amplicon analysis. Finally, the oral administration of a probiotic Lactobacillus strain was protective against the exacerbation of colitis and was associated with a change in the bacterial community of MACB in rWAS-exposed Tcra-/- mice. Taken together, these results suggested that loss of species diversity in MACB might play a key role in exacerbated colitis induced by chronic psychological stress. In addition, probiotic treatment may be used as a tool to preserve the diversity of bacterial species in MACB and alleviate gut inflammation induced by psychological stress.


Subject(s)
Colitis/etiology , Disease Models, Animal , Genes, T-Cell Receptor alpha/genetics , Intestinal Mucosa/microbiology , Lactobacillus/growth & development , Probiotics/administration & dosage , Stress, Psychological/complications , Animals , Chronic Disease , Colitis/psychology , Female , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , RNA, Ribosomal, 16S/genetics
2.
PLoS One ; 11(3): e0150559, 2016.
Article in English | MEDLINE | ID: mdl-26950850

ABSTRACT

The effect of psychological stress on the gastrointestinal microbiota is widely recognized. Chronic psychological stress may be associated with increased disease activity in inflammatory bowel disease, but the relationships among psychological stress, the gastrointestinal microbiota, and the severity of colitis is not yet fully understood. Here, we examined the impact of 12-week repeated water-avoidance stress on the microbiota of two inbred strains of T cell receptor alpha chain gene knockout mouse (background, BALB/c and C57BL/6) by means of next-generation sequencing of bacterial 16S rRNA genes. In both mouse strains, knockout of the T cell receptor alpha chain gene caused a loss of gastrointestinal microbial diversity and stability. Chronic exposure to repeated water-avoidance stress markedly altered the composition of the colonic microbiota of C57BL/6 mice, but not of BALB/c mice. In C57BL/6 mice, the relative abundance of genus Clostridium, some members of which produce the toxin phospholipase C, was increased, which was weakly positively associated with colitis severity, suggesting that expansion of specific populations of indigenous pathogens may be involved in the exacerbation of colitis. However, we also found that colitis was not exacerbated in mice with a relatively diverse microbiota even if their colonic microbiota contained an expanded phospholipase C-producing Clostridium population. Exposure to chronic stress also altered the concentration of free immunoglobulin A in colonic contents, which may be related to both the loss of bacterial diversity in the colonic microbiota and the severity of the colitis exacerbation. Together, these results suggest that long-term exposure to psychological stress induces dysbiosis in the immunodeficient mouse in a strain-specific manner and also that alteration of microbial diversity, which may be related to an altered pattern of immunoglobulin secretion in the gastrointestinal tract, might play a crucial role in the development of chronic stress-induced colitis.


Subject(s)
Colon/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/psychology , Microbiota , Stress, Psychological , Animals , Avoidance Learning , Clostridium/metabolism , Clostridium/physiology , Disease Models, Animal , Gene Knockout Techniques , Immunoglobulin A/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Mice , Receptors, Antigen, T-Cell, alpha-beta/deficiency , Receptors, Antigen, T-Cell, alpha-beta/genetics , Type C Phospholipases/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...