Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(11): 5631-5645, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37772991

ABSTRACT

Periodontitis (PD) is a severe inflammatory gum pathology that damages the periodontal soft tissue and bone. It is highly prevalent in the US, affecting more than 47% of adults. Besides routine scaling and root planing, there are few effective treatments for PD. Developed as an effective treatment for hyperlipidemia, simvastatin (SIM) is also known for its well-established anti-inflammatory and osteogenic properties, suggesting its potential utility in treating PD. Its clinical translation, however, has been impeded by its poor water-solubility, lack of osteotropicity, and side effects (e.g., hepatoxicity) associated with systemic exposure. To address these challenges, an N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive polymeric prodrug of SIM (ProGel-SIM) was developed as a local therapy for PD. Its aqueous solution is free-flowing at 4 °C and transitions into a hydrogel at ∼30 °C, allowing for easy local application and retention. After a thorough characterization of its physicochemical properties, ProGel-SIM was administered weekly into the periodontal pocket of an experimental rat model of PD. At 3 weeks post initiation of the treatment, the animals were euthanized with palate isolated for µ-CT and histological analyses. When compared to dose equivalent simvastatin acid (SMA, active form of SIM) treatment, the rats in the ProGel-SIM treated group showed significantly higher periodontal bone volume (0.34 mm3 vs 0.20 mm3, P = 0.0161) and less neutrophil (PMN) infiltration (P < 0.0001) and IL-1ß secretion (P = 0.0036). No measurable side effect was observed. Collectively, these results suggest that ProGel-SIM may be developed as a promising drug candidate for the effective clinical treatment of PD.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Periodontitis , Prodrugs , Rats , Animals , Prodrugs/chemistry , Simvastatin/chemistry , Polymers , Periodontitis/drug therapy
2.
RSC Adv ; 13(1): 370-387, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36683768

ABSTRACT

Polyvinylidene fluoride (PVDF) is a favorite polymer with excellent piezoelectric properties due to its mechanical and thermal stability. This article provides an overview of recent developments in the modification of PVDF fibrous structures and prospects for its application with a major focus on energy harvesting devices, sensors and actuator materials, and other types of biomedical engineering and devices. Many sources of energy harvesting are available in the environment, including waste-heated mechanical, wind, and solar energy. While each of these sources can be impactively used to power remote sensors, the structural and biological communities have emphasized scavenging mechanical energy by functional materials, which exhibit piezoelectricity. Piezoelectric materials have received a lot of attention in past decades. Piezoelectric nanogenerators can effectively convert mechanical energy into electrical energy suitable for low-powered electronic devices. Among piezoelectric materials, PVDF and its copolymers have been extensively studied in a diverse range of applications dealing with recent improvements in flexibility, long-term stability, ease of processing, biocompatibility, and piezoelectric generators based on PVDF polymers. This article reviews recent developments in the field of piezoelectricity in PVDF structure, fabrication, and applications, and presents the current state of power harvesting to create completely self-powered devices. In particular, we focus on original approaches and engineering tools to design construction parameters and fabrication techniques in electro-mechanical applications of PVDF.

SELECTION OF CITATIONS
SEARCH DETAIL
...