Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 18(4): e2001022, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33635585

ABSTRACT

One new aporphine, dicentrine-ß-N-oxide (1), together with five related known alkaloids dehydrodicentrine (2), predicentrine (3), N-methyllaurotetanine (4), cassythicine (5), and dicentrine (6) were isolated from the leaves of Ocotea puberula (Lauraceae). Antiprotozoal activity of the isolated compounds was evaluated in vitro against trypomastigote forms of Trypanosoma cruzi. Among the tested compounds, alkaloid 1 exhibited higher potential with EC50 value of 18.2 µM and reduced toxicity against NCTC cells (CC50 >200 µM - SI>11.0), similar to positive control benznidazole (EC50 of 17.7 µM and SI=10.7). Considering the promising results of dicentrine-ß-N-oxide (1) against trypomastigotes, the mechanism of parasite death caused by this alkaloid was investigated. As observed, this compound reached the plasma membrane electric potential directly after 2 h of incubation and triggered mitochondrial depolarization, which probably leads to trypomastigote death. Therefore, dicentrine-ß-N-oxide (1), reported for the first time in this work, can contribute to future works for the development of new trypanocidal agents.


Subject(s)
Aporphines/pharmacology , Cell Membrane/drug effects , Ocotea/chemistry , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Aporphines/chemistry , Aporphines/isolation & purification , Cell Line , Cell Membrane/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification
2.
Phytochem Anal ; 16(2): 93-7, 2005.
Article in English | MEDLINE | ID: mdl-15881116

ABSTRACT

An HPLC-PAD method has been developed in order to evaluate simultaneously the main secondary metabolites, flavonoid glycosides and styrylpyrones, of leaves of Cryptocarya moschata. The sample preparation, consisting of extraction, liquid-liquid extraction and centrifugation, requires minimum sample manipulation but produces high yields with reproducibility, selectivity and simplicity. HPLC on a C18 column presents each class of metabolites grouped and with good resolution of the main compounds. The experimental conditions can be used to study inter- and intra-specific variability of secondary metabolites in Cryptocarya spp.


Subject(s)
Chromatography, High Pressure Liquid/methods , Cryptocarya/chemistry , Flavonoids/analysis , Glycosides/analysis , Pyrones/analysis , Molecular Structure , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...