Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Cancer Res ; 78(12): 3363-3374, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29700002

ABSTRACT

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKVBR) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKVBR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKVBR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKVBR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKVBR-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKVBR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR.


Subject(s)
Central Nervous System Neoplasms/therapy , Neoplasms, Germ Cell and Embryonal/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Zika Virus/physiology , Animals , Brain/cytology , Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/pathology , Humans , Injections, Intraventricular , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Germ Cell and Embryonal/mortality , Neoplasms, Germ Cell and Embryonal/pathology , Neural Stem Cells/pathology , Survival Analysis , Treatment Outcome , Virus Shedding , Xenograft Model Antitumor Assays
2.
Mol Neurobiol ; 55(7): 5962-5975, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29128905

ABSTRACT

Several methods have been used to study the neuropathogenesis of Down syndrome (DS), such as mouse aneuploidies, post mortem human brains, and in vitro cell culture of neural progenitor cells. More recently, induced pluripotent stem cell (iPSC) technology has offered new approaches in investigation, providing a valuable tool for studying specific cell types affected by DS, especially neurons and astrocytes. Here, we investigated the role of astrocytes in DS developmental disease and the impact of the astrocyte secretome in neuron mTOR signaling and synapse formation using iPSC derived from DS and wild-type (WT) subjects. We demonstrated for the first time that DS neurons derived from hiPSC recapitulate the hyperactivation of the Akt/mTOR axis observed in DS brains and that DS astrocytes may play a key role in this dysfunction. Our results bear out that 21 trisomy in astrocytes contributes to neuronal abnormalities in addition to cell autonomous dysfunctions caused by 21 trisomy in neurons. Further research in this direction will likely yield additional insights, thereby improving our understanding of DS and potentially facilitating the development of new therapeutic approaches.


Subject(s)
Astrocytes/pathology , Down Syndrome/pathology , Induced Pluripotent Stem Cells/pathology , Neurogenesis , Neurons/pathology , Signal Transduction , Synapses/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis , Astrocytes/metabolism , Cell Proliferation , Coculture Techniques , Humans , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism , Spheroids, Cellular/pathology
3.
Cancer Res. ; 78(12): p. 3363-3374, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15210

ABSTRACT

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV(BR)) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV(BR) was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV(BR) in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV(BR). furthermore, modulation of Wnt signaling pathway significantly affected ZIKV(BR)-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV(BR) could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.

4.
Cancer Res, v. 78, n. 78, p. 3363-3374, jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2491

ABSTRACT

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV(BR)) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV(BR) was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV(BR) in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV(BR). furthermore, modulation of Wnt signaling pathway significantly affected ZIKV(BR)-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV(BR) could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.

5.
Hum Mol Genet ; 26(2): 270-281, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28007906

ABSTRACT

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder in which the MECP2 (methyl CpG-binding protein 2) gene is mutated. Recent studies showed that RTT-derived neurons have many cellular deficits when compared to control, such as: less synapses, lower dendritic arborization and reduced spine density. Interestingly, treatment of RTT-derived neurons with Insulin-like Growth Factor 1 (IGF1) could rescue some of these cellular phenotypes. Given the critical role of IGF1 during neurodevelopment, the present study used human induced pluripotent stem cells (iPSCs) from RTT and control individuals to investigate the gene expression profile of IGF1 and IGF1R on different developmental stages of differentiation. We found that the thyroid hormone receptor (TRalpha 3) has a differential expression profile. Thyroid hormone is critical for normal brain development. Our results showed that there is a possible link between IGF1/IGF1R and the TRalpha 3 and that over expression of IGF1R in RTT cells may be the cause of neurites improvement in neural RTT-derived neurons.


Subject(s)
Insulin-Like Growth Factor I/genetics , Methyl-CpG-Binding Protein 2/genetics , Receptors, Somatomedin/genetics , Rett Syndrome/genetics , Thyroid Hormone Receptors alpha/genetics , Cell Differentiation/genetics , Embryoid Bodies/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Neurodevelopmental Disorders , Neuronal Plasticity/genetics , Neurons/metabolism , Neurons/pathology , Receptor, IGF Type 1 , Rett Syndrome/metabolism , Rett Syndrome/physiopathology , Spine/growth & development , Spine/pathology , Synapses/genetics , Synapses/pathology , Transcriptome/genetics
6.
Stem Cell Rev Rep ; 7(4): 1006-17, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21503590

ABSTRACT

Pre-clinical studies have supported the use of mesenchymal stem cells (MSC) to treat highly prevalent neurodegenerative diseases such as Parkinson's disease (PD) but preliminary trials have reported controversial results. In a rat model of PD induced by MPTP neurotoxin, we first observed a significant bilateral preservation of dopaminergic neurons in the substantia nigra and prevention of motor deficits typically observed in PD such as hypokinesia, catalepsy, and bradykinesia, following intracerebral administration of human umbilical cord-derived MSC (UC-MSC) early after MPTP injury. However, surprisingly, administration of fibroblasts, mesenchymal cells without stem cell properties, as a xenotransplantation control was highly detrimental, causing significant neurodegeneration and motor dysfunction independently of MPTP. This observation prompted us to further investigate the consequences of transplanting a MSC preparation contaminated with fibroblasts, a plausible circumstance in cell therapy since both cell types display similar immunophenotype and can be manipulated in vitro under the same conditions. Here we show for the first time, using the same experimental model and protocol, that transplantation of UC-MSC induced potent neuroprotection in the brain resulting in clinical benefit. However, co-transplantation of UC-MSC with fibroblasts reverted therapeutic efficacy and caused opposite damaging effects, significantly exacerbating neurodegeneration and motor deficits in MPTP-exposed rats. Besides providing a rationale for testing UC-MSC transplantation in early phases of PD aiming at delaying disease progression, our pre-clinical study suggests that fibroblasts may be common cell contaminants affecting purity of MSC preparations and clinical outcome in stem cell therapy protocols, which might also explain discrepant clinical results.


Subject(s)
Fibroblasts/cytology , Mesenchymal Stem Cells/cytology , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Brain/metabolism , Brain/pathology , Dopaminergic Neurons/metabolism , Fibroblasts/metabolism , Humans , Immunohistochemistry , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Models, Animal , Parkinsonian Disorders/therapy , Rats , Rats, Wistar , Transplantation, Heterologous , Umbilical Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...