Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 23(1): 92, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37003969

ABSTRACT

BACKGROUND: Swine production expanded in the last decades. Efforts have been made to improve meat production and to understand its relationship to pig gut microbiota. Copper (Cu) is a usual supplement to growth performance in animal production. Here, two performance studies were conducted to investigate the effects of three different sources of Cu on the microbiota of piglets. A total of 256 weaned piglets were randomly allocated into 4 treatments (10 replicates per treatment of 4 piglets per pen in Trial 1 and 8 replicates of 3 piglets per pen in Trial 2). Treatments included a control group (fed 10 mg/kg of Cu from CuSO4), a group fed at 160 mg/kg of Copper (II) sulfate (CuSO4) or tri-basic copper chloride (TBCC), and a group fed with Cu methionine hydroxy analogue chelated (Cu-MHAC) at 150, 80, and 50 mg/kg in Phases 1 (24-35 d), 2 (36-49 d), and 3 (50-70 d), respectively. At 70 d, the cecum luminal contents from one pig per pen were collected and polled for 16 S rRNA sequencing (V3/V4 regions). Parameters were analyzed in a completely randomized block design, in which each experiment was considered as a block. RESULTS: A total of 1337 Operational Taxonomic Units (OTUs) were identified. Dominance and Simpson ecological metrics were statistically different between control and treated groups (P < 0.10) showing that different Cu sources altered the gut microbiota composition with the proliferation of some bacteria that improve gut health. A high abundance of Prevotella was observed in all treatments while other genera were enriched and differentially modulated, according to the Cu source and dosage. The supplementation with Cu-MHAC can modify a group of bacteria involved in feed efficiency (FE) and short chain fatty acids (SCFA) production (Clostridium XIVa, Desulfovibrio, and Megasphera). These bacteria are also important players in the activation of ghrelin and growth hormones that were previously reported to correlate with Cu-MHAC supplementation. CONCLUSIONS: These results indicated that some genera seem to be directly affected by the Cu source offered to the animals. TBCC and Cu-MHAC (even in low doses) can promote healthy modifications in the gut bacterial composition, being a promising source of supplementation for piglets.


Subject(s)
Copper , Gastrointestinal Microbiome , Animals , Animal Feed/analysis , Cecum , Copper/pharmacology , Copper Sulfate/pharmacology , Diet/veterinary , Dietary Supplements/analysis , Swine
2.
Front Vet Sci ; 5: 13, 2018.
Article in English | MEDLINE | ID: mdl-29487856

ABSTRACT

Salmonellosis is a poultry industry and public health concern worldwide. Recently, Salmonella enterica serovar Heidelberg (SH) has been reported in broilers in Brazil. The effect of feeding a blend of three strains of Bacillus subtilis (PRO) was studied in broilers orally challenged (107 CFU/chick) or not with a SH isolated in south of Brazil (UFPR1 strain). Twelve male Cobb 500 broilers per pen were randomly assigned to six treatments in a 3 × 2 factorial experiment where PRO was added at 0, 250, or 500 g/ton of broiler feed and fed to either SH-challenged (SH Control, SH + PRO 250, and SH + PRO 500) or non-challenged birds (Control, PRO 250, and PRO 500). Broiler performance, histologic alterations in intestinal morphology, Salmonella quantification and immune cells counts in liver (macrophages, T CD4+ and T CD8+) were analyzed. Changes in the intestinal microbiota of broilers were also studied by metagenomics for Control, SH Control, SH + PRO 250, and SH + PRO 500 only. Feeding PRO at 250 or 500 g/ton reduced SH counts and incidence in liver and cecum at 21 days of age. It was observed that PRO groups increased the macrophage mobilization to the liver in SH-challenged birds (P < 0.05) but reduced these cells in the liver of non-challenged birds, showing an interesting immune cell dynamics effect. PRO at 250 g/ton did not affect gut histology, but improved animal performance (P < 0.05) while PRO at 500/ton did not affect animal performance but increased histologic alteration related to activation of the defense response in the ileum in SH challenged birds compared to control birds (P < 0.05). SH + PRO 500 group presented a more diverse cecal microbiota (Shannon-Wiener index; P < 0.05) compared to Control and SH Control groups; while SH + PRO 250 had greater ileal richness (JackkNife index) compared to Control (P < 0.05). PRO was effective in reducing Salmonella colonization in liver and cecum when fed at 250 or 500 g/ton to broilers inoculated with SH strain UFPR1. PRO promotes positive alterations in performance (at 250 g/ton), immune modulatory effect in the gastrointestinal tract, SH reduction, and intestinal microbiota modulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...