Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Stem Cell Reports ; 16(11): 2577-2588, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34678209

ABSTRACT

A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.


Subject(s)
Gene Editing/methods , Hydrolases/genetics , Liver Transplantation/methods , Living Donors , Transplantation Chimera/genetics , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Gene Expression Profiling/methods , Humans , Hydrolases/metabolism , Induced Pluripotent Stem Cells/metabolism , Transplantation Chimera/metabolism
2.
Xenotransplantation ; 28(2): e12668, 2021 03.
Article in English | MEDLINE | ID: mdl-33372360

ABSTRACT

Orthotopic liver transplantation (OLT) is the only definitive treatment option for many patients with end-stage liver disease. Current supply of donor livers for OLT is not keeping up with the growing demand. To overcome this problem, a number of experimental strategies have been developed either to provide a bridge to transplant for patients on the waiting list or to bioengineer whole livers for OLT by replenishing them with fresh supplies of hepatic cells. In recent years, blastocyst complementation has emerged as the most promising approach for generating whole organs and, in combination with gene editing technology, it has revolutionized regenerative medicine. This methodology was successful in producing xenogeneic organs in animal hosts. Blastocyst complementation has the potential to produce whole livers in large animals that could be xenotransplanted in humans, thereby reducing the shortage of livers for OLT. However, significant experimental and ethical barriers remain for the production of human livers in domestic animals, such as the pig. This review summarizes the current knowledge and provides future perspectives for liver xenotransplantation in humans.


Subject(s)
Pluripotent Stem Cells , Animals , Blastocyst , Humans , Liver , Regenerative Medicine , Swine , Transplantation, Heterologous
3.
Hepat Med ; 12: 79-92, 2020.
Article in English | MEDLINE | ID: mdl-32607015

ABSTRACT

BACKGROUND: Research directed towards drug development, metabolism, and liver functions often utilize primary hepatocytes (PH) for preliminary in vitro studies. Variability in the in vitro functionality of PH and the unsuitability of hepatocarcinoma cells for these studies have driven researchers to look to ESC, iPS, and other stem cell types using differentiation protocols to provide more reliable and available cells. This study describes the development of hepatocyte-like cells through the in vitro differentiation of human TERT-immortalized cord blood-derived multi-lineage progenitor cells (MLPC). The E12 clonal cell line derived from polyclonal TERT-transfected cells was used throughout the study. METHODS: E12 MLPC were subjected to a three-step differentiation protocol using alternating combinations of growth factors, cytokines, and maturational factors. Cells at various stages of differentiation were analyzed for consistency with PH by morphology, immunohistochemistry, urea production, and gene expression. RESULTS: E12 MLPC were shown to significantly change morphology with each stage of differentiation. Coincidental with the morphological changes in the cells, immunohistochemistry data documented the differentiation to committed endoderm by the expression of SOX-17 and GATA-4; the progression to committed hepatocyte-like cells by the expression of a large number of markers including α-fetoprotein and albumin; and the final differentiation by the expression of nuclear and cytoplasmic HNF4. Fully differentiated cells demonstrated gene expression, urea production, and immunohistochemistry consistent with PH. A methodology and medium formulation to continuously expand the E12-derived hepatocyte-like cells is described. CONCLUSION: The availability of immortalized hepatocyte-like cell lines could provide a consistent tool for the study of hepatic diseases, drug discovery, and the development of cellular therapies for liver disorders. Utilization of these techniques could provide a basis for the development of bridge therapies for liver failure patients awaiting transplant.

4.
Genes (Basel) ; 11(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32630053

ABSTRACT

The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.


Subject(s)
Callithrix , Disease Models, Animal , Embryonic Stem Cells/metabolism , Liver Diseases/metabolism , Tissue Engineering/methods , Animals , Drug Development/methods , Embryonic Stem Cells/transplantation , Liver Diseases/pathology , Liver Diseases/therapy , Stem Cell Transplantation/methods
5.
Sci Rep ; 10(1): 9249, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32514058

ABSTRACT

Carotid bodies (CBs) are chemoreceptors that monitor and register changes in the blood, including the levels of oxygen, carbon dioxide, and pH, and regulate breathing. Enhanced activity of CBs was shown to correlate with a significant elevation in the blood pressure of patients with hypertension. CB removal or denervation were previously shown to reduce hypertension. Here we demonstrate the feasibility of a dual-mode ultrasound array (DMUA) system to safely ablate the CB in vivo in a spontaneously hypertensive rat (SHR) model of hypertension. DMUA imaging was used for guiding and monitoring focused ultrasound (FUS) energy delivered to the target region. In particular, 3D imaging was used to identify the carotid bifurcation for targeting the CBs. Intermittent, high frame rate imaging during image-guided FUS (IgFUS) delivery was used for monitoring the lesion formation. DMUA imaging provided feedback for closed-loop control (CLC) of the lesion formation process to avoid overexposure. The procedure was tolerated well in over 100 SHR and normotensive rats that received unilateral and bilateral treatments. The measured mean arterial pressure (MAP) exhibited measurable deviation from baseline 2-4 weeks post IgFUS treatment. The results suggest that the direct unilateral FUS treatment of the CB might be sufficient to reduce the blood pressure in hypertensive rats and justify further investigation in large animals and eventually in human patients.


Subject(s)
Carotid Body/surgery , High-Intensity Focused Ultrasound Ablation/instrumentation , Hypertension/surgery , Surgery, Computer-Assisted/instrumentation , Animals , Carotid Body/pathology , Hypertension/diagnostic imaging , Hypertension/pathology , Male , Rats , Rats, Inbred SHR , Vital Signs
6.
PLoS One ; 15(6): e0234002, 2020.
Article in English | MEDLINE | ID: mdl-32497071

ABSTRACT

Human primary hepatocytes (PHs) are critical to studying liver functions, drug metabolism and toxicity. PHs isolated from livers that are unacceptable for transplantation have limited expansion and culture viability in vitro, in addition to rapidly deteriorating enzymatic functions. The unsuitability of immortalized hepato-carcinoma cell lines for this function has prompted studies to develop hepatocyte-like cells from alternative sources like ESC, iPS, and other stem cell types using differentiation protocols. This study describes a novel technique to produce expandable and functional hepatocyte-like cells from the fusion of an immortalized human umbilical cord blood derived cell line (E12 MLPC) to normal human primary hepatocytes. Multi-lineage progenitor cells (MLPC) comprise a small subset of mesenchymal-like cells isolated from human umbilical cord blood. MLPC are distinguishable from other mesenchymal-like cells by their extended expansion capacity (up to 80 cell doublings before senescence) and the ability to be differentiated into cells representative of endo-, meso- and ectodermal origins. Transfection of MLPC with the gene for telomerase reverse transcriptase (TERT) resulted in clonal cell lines that were capable of differentiation to different cellular outcomes while maintaining their functional immortality. A methodology for the development of immortalized hepatocyte-like hybrid cells by the in vitro fusion of human MLPC with normal human primary hepatocytes is reported. The resultant hybrid cells exhibited homology with hepatocytes by morphology, immunohistochemistry, urea and albumin production and gene expression. A medium that allows stable long-term expansion of hepatocyte-like fusion cells is described.


Subject(s)
Cell Fusion , Hepatocytes/cytology , Hybrid Cells/cytology , Stem Cells/cytology , Cell Differentiation , Cells, Cultured , Hepatocytes/metabolism , Humans , Hybrid Cells/metabolism , Stem Cells/metabolism , Telomerase/genetics , Transfection
7.
Hepat Med ; 12: 15-27, 2020.
Article in English | MEDLINE | ID: mdl-32104112

ABSTRACT

BACKGROUND: Primary human hepatocytes (PHHs) are the ideal candidates for studying critical liver functions such as drug metabolism and toxicity. However, as they are isolated from discarded livers that are unsuitable for transplantation, they possess limited expansion ability in vitro and their enzymatic functions deteriorate rapidly because they are often of poor quality. Therefore, there is a compelling reason to find reliable alternative sources of hepatocytes. METHODS: In this study, we report on efficient and robust differentiation of embryonic stem cells (ESC) from the common marmoset Callithrix jacchus into functional hepatocyte-like cells (HLC) using a simple, and reproducible three-step procedure. ESC-derived HLCs were examined by morphological analysis and tested for their expression of hepatocyte-specific markers using a combination of immunohistochemistry, RT-PCR, and biochemical assays. Primary human hepatocytes were used as controls. RESULTS: ESC-derived HLCs expressed each of the hepatocyte-specific markers tested, including albumin; α-fetoprotein; asialoglycoprotein receptor 1; α-1 antitrypsin; hepatocyte nuclear factors 1α and 4; cytokeratin 18; hepatocyte growth factor receptor; transferrin; tyrosine aminotransferase; alkaline phosphatase; c-reactive protein; cytochrome P450 enzymes CYP1A2, CYP2E1 and CYP3A4; and coagulation factors FVII and FIX. They were functionally competent as demonstrated by biochemical assays in addition to producing urea. CONCLUSION: Our data strongly suggest that marmoset HLCs possess characteristics similar to those of PHHs. They could, therefore, be invaluable for studies on drug metabolism and cell transplantation therapy for a variety of liver disorders. Because of the similarities in the anatomical and physiological features of the common marmoset to that of humans, Callithrix jacchus is an appropriate animal model to study human disease conditions and cellular functions.

8.
Cell Transplant ; 28(9-10): 1091-1105, 2019.
Article in English | MEDLINE | ID: mdl-31426664

ABSTRACT

Blastocyst complementation combined with gene editing is an emerging approach in the field of regenerative medicine that could potentially solve the worldwide problem of organ shortages for transplantation. In theory, blastocyst complementation can generate fully functional human organs or tissues, grown within genetically engineered livestock animals. Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ development can open a niche for human stem cells to occupy, thus generating human tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung, and skeletal muscle, as well as cells of the immune and nervous systems. Within each of these organ systems, we identify and discuss (i) the common causes of organ failure; (ii) the current state of regenerative therapies; and (iii) the candidate genes to knockout and enable specific exogenous organ development via the use of blastocyst complementation. We also highlight some of the current barriers limiting the success of blastocyst complementation.


Subject(s)
Animals, Genetically Modified , Blastocyst/metabolism , Gene Expression Regulation, Developmental , Organ Transplantation , Organogenesis , Pluripotent Stem Cells , Animals , Animals, Genetically Modified/embryology , Animals, Genetically Modified/genetics , Humans
9.
J Cell Biochem ; 119(6): 4265-4278, 2018 06.
Article in English | MEDLINE | ID: mdl-29266637

ABSTRACT

The development of innovative genome editing techniques in recent years has revolutionized the field of biomedicine. Among the novel approaches, the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas9) technology has become the most popular, in part due to its matchless ability to carry out gene editing at the target site with great precision. With considerable successes in animal and preclinical studies, CRISPR/Cas9-mediated gene editing has paved the way for its use in human trials, including patients with a variety of liver diseases. Gene editing is a logical therapeutic approach for liver diseases because many metabolic and acquired disorders are caused by mutations within a single gene. In this review, we provide an overview on current and emerging therapeutic strategies for the treatment of liver diseases using the CRISPR/Cas9 technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Diseases, Inborn , Liver Diseases , Mutation , Animals , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/therapy , Humans , Liver Diseases/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/therapy
10.
Genes (Basel) ; 8(2)2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28218682

ABSTRACT

In recent years, immunotherapy has gained renewed interest as an alternative therapeutic approach for solid tumors. Its premise is based on harnessing the power of the host immune system to destroy tumor cells. Development of immune-mediated therapies, such as vaccines, adoptive transfer of autologous immune cells, and stimulation of host immunity by targeting tumor-evasive mechanisms have advanced cancer immunotherapy. In addition, studies on innate immunity and mechanisms of immune evasion have enhanced our understanding on the immunology of liver cancer. Preclinical and clinical studies with immune-mediated therapies have shown potential benefits in patients with liver cancer. In this review, we summarize current knowledge and recent developments in tumor immunology by focusing on two main primary liver cancers: hepatocellular carcinoma and cholangiocarcinoma.

11.
Biochem Biophys Res Commun ; 477(3): 317-21, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27329815

ABSTRACT

The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human ß-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.


Subject(s)
Blotting, Southern/methods , Genome , Transposases/genetics , DNA Transposable Elements , Humans , K562 Cells
12.
Expert Opin Biol Ther ; 16(5): 595-608, 2016.
Article in English | MEDLINE | ID: mdl-26914853

ABSTRACT

INTRODUCTION: More than 100 liver-related disorders are caused by mutations in a single gene. These include both inherited and acquired genetic disorders. The development of nucleic acid-based therapies for liver diseases has been severely restricted due to many undesirable side effects and methodological limitations. AREAS COVERED: In recent years, however, efforts have been intensified to address these issues, and to develop liver-targeted approaches using novel gene editing technologies, including ZFN, TALEN, CRISPR/Cas and PITCh. While each of these methods utilizes a distinct mechanism of gene modification at the genomic level, they all are dependent on an efficient delivery system to the target site within the host cell. This review will provide an overview on current and emerging therapeutic strategies for the treatment of liver diseases. EXPERT OPINION: Clinical trials for liver gene therapy have entered an exciting stage and are already showing promise with the development of novel technologies and delivery options. A deeper understanding of off-target effects produced by gene editing approaches and immune responses generated in host cells by gene carriers is needed to fully realize their potential.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Deoxyribonucleases/genetics , Endodeoxyribonucleases/genetics , Genetic Therapy , Liver Diseases/therapy , RNA Editing/genetics , Animals , Genetic Vectors , Humans
13.
J Clin Med ; 4(12): 1989-97, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26690234

ABSTRACT

MicroRNAs are small (~22 nt), noncoding RNA molecules that have critical cellular functions in proliferation, differentiation, angiogenesis and apoptosis. miRNA expression profiling has been used to create signatures of solid tumors and, in many cases, it has been shown to correlate with the severity of the disease. The rabbit VX2 tumor model has been used widely to study a number of human cancers. Our objective in this study is to generate an miRNA signature of the VX2 tumor and to identify miRNAs that are highly expressed in this aggressive tumor. In this study, we performed miRNA profiling of the rabbit VX2 tumor using a microarray that has probes for 1292 unique miRNAs. Their expression in tumor samples was quantified and analyzed. We found that 35 miRNAs were significantly up-regulated in the VX2 tumor. Among these, 13 human miRNAs and eight members of the let-7 family were previously identified in cancers. In addition, we show that the expression of three miRNAs (miR-923, miR-1275, and miR-1308) is novel for the rabbit VX2 tumor, and their expression was not previously shown to be associated with any type of cancer. For the first time, we show the miRNA signature profile for a solid tumor in a rabbit model. miRNAs highly expressed in the VX2 tumor may serve as novel candidates for molecular biomarkers and as potential drug targets.

16.
Liver Transpl ; 21(6): 718-37, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25824605

ABSTRACT

The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.


Subject(s)
Liver Diseases/therapy , Targeted Gene Repair , Animals , Genetic Vectors , Humans
17.
World J Gastroenterol ; 21(7): 2011-29, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25717234

ABSTRACT

AIM: To identify the genes induced and regulated by the MYC protein in generating tumors from liver stem cells. METHODS: In this study, we have used an immortal porcine liver stem cell line, PICM-19, to study the role of c-MYC in hepatocarcinogenesis. PICM-19 cells were converted into cancer cells (PICM-19-CSCs) by overexpressing human MYC. To identify MYC-driven differential gene expression, transcriptome sequencing was carried out by RNA sequencing, and genes identified by this method were validated using real-time PCR. In vivo tumorigenicity studies were then conducted by injecting PICM-19-CSCs into the flanks of immunodeficient mice. RESULTS: Our results showed that MYC-overexpressing PICM-19 stem cells formed tumors in immunodeficient mice demonstrating that a single oncogene was sufficient to convert them into cancer cells (PICM-19-CSCs). By using comparative bioinformatics analyses, we have determined that > 1000 genes were differentially expressed between PICM-19 and PICM-19-CSCs. Gene ontology analysis further showed that the MYC-induced, altered gene expression was primarily associated with various cellular processes, such as metabolism, cell adhesion, growth and proliferation, cell cycle, inflammation and tumorigenesis. Interestingly, six genes expressed by PICM-19 cells (CDO1, C22orf39, DKK2, ENPEP, GPX6, SRPX2) were completely silenced after MYC-induction in PICM-19-CSCs, suggesting that the absence of these genes may be critical for inducing tumorigenesis. CONCLUSION: MYC-driven genes may serve as promising candidates for the development of hepatocellular carcinoma therapeutics that would not have deleterious effects on other cell types in the liver.


Subject(s)
Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling , Liver Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/genetics , Transcriptome , Animals , Biomarkers, Tumor/metabolism , Cell Line , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Computational Biology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Proto-Oncogene Proteins c-myc/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Swine , Time Factors , Transfection , Tumor Burden
18.
World J Gastroenterol ; 19(43): 7500-14, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24282342

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. It is caused by a variety of risk factors, most common ones being infection with hepatitis viruses, alcohol, and obesity. HCC often develops in the background of underlying cirrhosis, and even though a number of interventional treatment methods are currently in use, recurrence is fairly common among patients who have had a resection. Therefore, whole liver transplantation remains the most practical treatment option for HCC. Due to the growing incidence of HCC, intense research efforts are being made to understand cellular and molecular mechanisms of the disease so that novel therapeutic strategies can be developed to combat liver cancer. In recent years, it has become clear that innate immunity plays a critical role in the development of a number of liver diseases, including HCC. In particular, the activation of Toll-like receptor signaling results in the generation of immune responses that often results in the production of pro-inflammatory cytokines and chemokines, and could cause acute inflammation in the liver. In this review, the current knowledge on the role of innate immune responses in the development and progression of HCC is examined, and emerging therapeutic strategies based on molecular mechanisms of HCC are discussed.


Subject(s)
Carcinoma, Hepatocellular/immunology , Immunity, Innate , Liver Neoplasms/immunology , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Polymorphism, Genetic , Risk Factors , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
19.
Arch Toxicol ; 87(2): 227-47, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23007558

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor that accounts for ~80 % of all liver cancer cases worldwide. It is a multifactorial disease caused by a variety of risk factors and often develops in the background of underlying cirrhosis. A number of cellular phenomena, such as tumor microenvironment, inflammation, oxidative stress, and hypoxia act in concert with various molecular events to facilitate tumor initiation, progression, and metastasis. The emergence of microRNAs and molecular-targeted therapies adds a new dimension in our efforts to combat this deadly disease. Intense research in this multitude of areas has led to significant progress in our understanding of cellular processes and molecular mechanisms that occur during multistage events that lead to hepatocarcinogenesis. In this review, we discuss the current knowledge of HCC, focusing mainly on advances that have occurred during the past 5 years and on the development of novel therapeutics for liver cancer.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/physiopathology , Carcinoma, Hepatocellular/therapy , Cell Hypoxia , Humans , Inflammation , Liver Neoplasms/genetics , Liver Neoplasms/physiopathology , Liver Neoplasms/therapy , MicroRNAs/genetics , Molecular Targeted Therapy , Neoplastic Stem Cells/pathology , Oxidative Stress , Tumor Microenvironment/genetics
20.
Diagnostics (Basel) ; 3(1): 170-91, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-26835673

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is the third leading cause of cancer-related deaths worldwide. Treatment options for HCC are very limited, as it is often diagnosed at a late stage. Recent studies have demonstrated that microRNAs (miRNAs), a class of non-coding RNAs, are aberrantly expressed in HCC. Some of these were shown to be functionally involved in carcinogenesis and tumor progression, suggesting that miRNAs can serve as novel molecular targets for HCC therapy. Several promising studies have recently demonstrated the therapeutic potential of miRNAs in animal models and in reducing the viral load in hepatitis C patients. In this review, these advances and strategies for modulating miRNAs for in vivo therapeutic delivery and replacement therapy are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...