Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Invertebr Pathol ; 197: 107872, 2023 03.
Article in English | MEDLINE | ID: mdl-36566013

ABSTRACT

To prevent loss from disease, immunostimulants have been used as dietary supplements to improve immunity and survival of shrimps. Among the various types of immunostimulants, there is increasing evidence that a diet enriched with bacterial lipopolysaccharide can reduce the mortality rate of shrimp under exposure to pathogens. Here, the immunostimulatory effects of bacterial lipopolysaccharide (LPS) from various bacterial sources were explored. Bacterial LPS was extracted from a shrimp pathogen, Vibrio harveyi and its effects were compared with the commercially available LPS from the non-shrimp pathogen, Escherichia coli. Our results revealed that the LPS from V. harveyi was different in molecular size but contained similar functional groups to that from E. coli. To understand their molecular mechanisms, bacterial LPS from the two sources were applied as a supplementary diet and fed to juvenile shrimp for 4-week feeding period before tissue samples were collected for transcriptomic analysis by next generation sequencing. Gene expression profiling revealed that major immune-related genes such as pattern recognition proteins (PRPs), proteinases and proteinase inhibitors, prophenoloxidase systems (proPO system), antimicrobial peptides (AMPs), signaling transduction pathways, heat shock proteins (HSPs), oxidative stress responses, and other immune-related molecules such as mucins and peritrophins were modulated in the groups of shrimp fed with bacterial LPS from both sources, but at different levels. The results suggest that bacterial LPS could modulate shrimp immune system, and different LPS sources led to different activation of immune pathways. Additionally, metabolic-related genes were affected by LPS, suggesting that energy was required for immune stimulation. In the V. harveyi pathogen challenge trial, all shrimp groups fed with diets containing LPS from both bacterial sources showed better survival than the control group without LPS. When comparing groups fed with LPS supplemented diets, the higher concentration of LPS (8 µg/body weight) from E. coli resulted in a better survival rate than a lower concentration (4 µg/body weight). Conversely, shrimp fed with a diet containing LPS from V. harveyi showed a lower survival rate when a higher dose of LPS (8 µg/body weight) was administered than the group fed with a lower concentration of LPS (4 µg/body weight). This could be due to overstimulation of shrimp immune responses, especially by LPS derived from shrimp pathogens, resulting in a reverse effect. These results confirm that immunity in shrimp upon administration of bacterial LPS depends on the origin and dose of the LPS administered.


Subject(s)
Penaeidae , Vibrio , Animals , Adjuvants, Immunologic/metabolism , Adjuvants, Immunologic/pharmacology , Body Weight , Dietary Supplements/analysis , Escherichia coli , Immunity, Innate , Lipopolysaccharides/pharmacology , Penaeidae/microbiology , Vibrio/physiology
2.
PLoS One ; 17(10): e0275160, 2022.
Article in English | MEDLINE | ID: mdl-36190974

ABSTRACT

The aim of this study was to investigate the expression of genes related to muscle growth, hypoxia and oxidative stress responses, a multi-substrate serine/threonine-protein kinase (AMPK) and AMPK-related kinases, carbohydrate metabolism, satellite cells activities and fibro- adipogenic progenitors (FAPs) in fast-growing (FG) (n = 30) and medium-growing (MG) chickens (n = 30). Pectoralis major muscles were collected at 7d, 14d, 21d, 28d, 35d and 42d of age. According to their macroscopic features, the samples from FG up to 21d of age were classified as unaffected, while all samples collected at an older age exhibited macroscopic features ascribable to white striping and/or wooden breast abnormalities. In contrast, MG samples did not show any feature associated to muscle disorders. The absolute transcript abundance of 33 target genes was examined by droplet digital polymerase chain reaction. The results showed differential gene expression profiles between FG and MG chickens at different ages. While most genes remained unchanged in MG chickens, the expression patterns of several genes in FG were significantly affected by age. Genes encoding alpha 1, alpha 2, beta 2 and gamma 3 isoforms of AMPK, as well as AMPK-related kinases, were identified as differentially expressed between the two strains. The results support the hypothesis of oxidative stress-induced muscle damage with metabolic alterations in FG chickens. An increased expression of ANXA2, DES, LITAF, MMP14, MYF5 and TGFB1 was observed in FG strain. The results suggest the occurrence of dysregulation of FAP proliferation and differentiation occurring during muscle repair. FAPs could play an important role in defining the proliferation of connective tissue (fibrosis) and deposition of intermuscular adipose tissue which represents distinctive traits of muscle abnormalities. Overall, these findings demonstrate that dysregulated molecular processes associated with myopathic lesions in chickens are strongly influenced by growth rate, and, to some extent, by age.


Subject(s)
Muscular Diseases , Poultry Diseases , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Chickens/genetics , Chickens/metabolism , Matrix Metalloproteinase 14/metabolism , Muscular Diseases/pathology , Pectoralis Muscles/metabolism , Poultry Diseases/pathology , Serine/metabolism , Threonine/metabolism
3.
Appl Microbiol Biotechnol ; 106(9-10): 3751-3764, 2022 May.
Article in English | MEDLINE | ID: mdl-35562491

ABSTRACT

The emergence of Vibrio diseases, including acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio spp., had resulted in heavy losses in global shrimp production. Biofloc technology is a closed aquaculture system developed as one of the sustainable solutions to increase system resilience in the shrimp industry. In this study, biofloc was formed externally (ex situ biofloc) with probiotics Bacillus sp. strain BME and Bacillus sp. strain BCE, diatom microalgae Chaetoceros calcitrans, and a consortium of nitrifying bacteria, in the ratio of 1:1:6:6 as a starter. The study showed that the ex situ biofloc supplementation in Pacific whiteleg shrimp (L. vannamei) postlarvae culture can increase the shrimp culture performance (shrimp survival and growth), reduce Vibrio counts in the water and shrimp body, and provide stimulation of the shrimp immune response through humoral immune responses, such as pattern recognition protein (C-type lectin) and melanization process (proPO). Overall, the results indicate that the supplementation of ex situ biofloc provided protection to shrimp under Vibrio infection, regardless of the timing of addition (before, simultaneously, or after addition of Vibrio sp. strain VPA). This suggests that the ex situ biofloc can be effective as a preventive and a supportive treatment against potential AHPND infection in L. vannamei postlarvae culture. Taken together, the ability of the ex situ biofloc to modulate immune-related gene expression and resistance of L. vannamei against potentially AHPND-causing Vibrio sp. strain makes it an effective aquaculture technology for infectious disease control in shrimp production with high-density and minimal water exchange culture. KEY POINTS: • Supplementation of ex situ produced biofloc in shrimp postlarvae culture. • Ex situ biofloc reduces Vibrio counts in the water and shrimp body. • Ex situ biofloc stimulates shrimp humoral immune responses and survival.


Subject(s)
Penaeidae , Probiotics , Vibrio parahaemolyticus , Vibrio , Animals , Aquaculture/methods , Immunity, Innate , Necrosis , Penaeidae/microbiology , Water
4.
Front Physiol ; 12: 691194, 2021.
Article in English | MEDLINE | ID: mdl-34262480

ABSTRACT

Transcriptomes associated with wooden breast (WB) were characterized in broilers at two different market ages. Breasts (Pectoralis major) were collected, 20-min postmortem, from male Ross 308 broilers slaughtered at 6 and 7 weeks of age. The breasts were classified as "non-WB" or "WB" based on palpation hardness scoring (non-WB = no abnormal hardness, WB = consistently hardened). Total RNA was isolated from 16 samples (n = 3 for 6 week non-WB, n = 3 for 6 week WB; n = 5 for 7 week non-WB, n = 5 for 7 week WB). Transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique, and compared between non-WB and WB samples of the same age. Among 6 week broilers, 910 transcripts were differentially expressed (DE) (false discovery rate, FDR < 0.05). Pathway analysis underlined metabolisms of glucose and lipids along with gap junctions, tight junction, and focal adhesion (FA) signaling as the top enriched pathways. For the 7 week broilers, 1,195 transcripts were identified (FDR < 0.05) with regulation of actin cytoskeleton, mitogen-activated protein kinase (MAPK) signaling, protein processing in endoplasmic reticulum and FA signaling highlighted as the enriched affected pathways. Absolute transcript levels of eight genes (actinin-1 - ACTN1, integrin-linked kinase - ILK, integrin subunit alpha 8 - ITGA8, integrin subunit beta 5 - ITGB5, protein tyrosine kinase 2 - PTK2, paxillin - PXN, talin 1 - TLN1, and vinculin - VCL) of FA signaling pathway were further elucidated using a droplet digital polymerase chain reaction. The results indicated that, in 6 week broilers, ITGA8 abundance in WB was greater than that of non-WB samples (p < 0.05). Concerning 7 week broilers, greater absolute levels of ACTN1, ILK, ITGA8, and TLN1, accompanied with a reduced ITGB5 were found in WB compared with non-WB (p < 0.05). Transcriptional modification of FA signaling underlined the potential of disrupted cell-cell communication that may incite aberrant molecular events in association with development of WB myopathy.

5.
Sci Rep ; 11(1): 13881, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230553

ABSTRACT

With the rapid growth in the global demand, the shrimp industry needs integrated approaches for sustainable production. A high-quality shrimp larva is one of the crucial key requirements to maximize shrimp production. Survival and growth rates during larval development are often criteria to evaluate larval quality, however many aspects of gene regulation during shrimp larval development have not yet been identified. To further our understanding of biological processes in their early life, transcriptomic analysis of larval developmental stages (nauplius, zoea, mysis, and postlarva) were determined in the black tiger shrimp, Penaeus monodon using next-generation RNA sequencing. Gene clustering and gene enrichment analyses revealed that most of the transcripts were mainly related to metabolic processes, cell and growth development, and immune system. Interestingly, Spätzle and Toll receptors were found in nauplius stage, providing evidence that Toll pathway was a baseline immune system established in early larval stages. Genes encoding pathogen pattern-recognition proteins (LGBP, PL5-2 and c-type lectin), prophenoloxidase system (PPAE2, PPAF2 and serpin), antimicrobial peptides (crustin and antiviral protein), blood clotting system (hemolymph clottable protein) and heat shock protein (HSP70) were expressed as they developed further, suggesting that these immune defense mechanisms were established in later larval stages.


Subject(s)
Gene Expression Profiling , Life Cycle Stages/genetics , Life Cycle Stages/immunology , Penaeidae/genetics , Penaeidae/immunology , Animals , Gene Expression Regulation, Developmental , Larva/genetics , Larva/immunology , Metabolic Networks and Pathways/genetics , Models, Biological , Molecular Sequence Annotation , Penaeidae/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
6.
Mol Ecol Resour ; 21(5): 1620-1640, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33586292

ABSTRACT

To salvage marine ecosystems from fishery overexploitation, sustainable and efficient aquaculture must be emphasized. The knowledge obtained from available genome sequence of marine organisms has accelerated marine aquaculture in many cases. The black tiger shrimp (Penaeus monodon) is one of the most prominent cultured penaeid shrimps (Crustacean) with an average annual global production of half a million tons in the last decade. However, its currently available genome assemblies lack the contiguity and completeness required for accurate genome annotation due to the highly repetitive nature of the genome and technical difficulty in extracting high-quality, high-molecular weight DNA. Here, we report the first chromosome-level whole-genome assembly of P. monodon. The combination of long-read Pacific Biosciences (PacBio) and long-range Chicago and Hi-C technologies enabled a successful assembly of this first high-quality genome sequence. The final assembly covered 2.39 Gb (92.3% of the estimated genome size) and contained 44 pseudomolecules, corresponding to the haploid chromosome number. Repetitive elements occupied a substantial portion of the assembly (62.5%), the highest of the figures reported among crustacean species. The availability of this high-quality genome assembly enabled the identification of genes associated with rapid growth in the black tiger shrimp through the comparison of hepatopancreas transcriptome of slow-growing and fast-growing shrimps. The results highlighted several growth-associated genes. Our high-quality genome assembly provides an invaluable resource for genetic improvement and breeding penaeid shrimp in aquaculture. The availability of P. monodon genome enables analyses of ecological impact, environment adaptation and evolution, as well as the role of the genome to protect the ecological resources by promoting sustainable shrimp farming.


Subject(s)
Genome , Penaeidae , Animals , Aquaculture , Chromosomes , Penaeidae/genetics , Penaeidae/growth & development , Transcriptome
7.
Metabolomics ; 17(1): 8, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420663

ABSTRACT

INTRODUCTION: Intestinal microbiota and metabolites play important roles for further improvement of animal production. Metabolomics of shrimp intestine to understand roles and their relationship to the host is hampered by the lack of metabolome profiling method. OBJECTIVES: This study aims to develop extraction and analytical methods to allow accurate metabolic analysis in shrimp intestine. METHODS: Conditions for extraction and LC-HRMS/MS analysis were optimized. RESULTS: Extraction with ethyl acetate:acetone (15:2 v/v) acidified with 0.5% acetic acid, elution with acetonitrile:water acidified with 0.01% acetic acid for 25 min, and mass fragmentation at 15% HCD were the optimal conditions, yielding the highest signal intensity and numbers of putative metabolites. CONCLUSION: Our method enabled in-depth study for shrimp-microbial interaction at metabolite level.


Subject(s)
Decapoda/metabolism , Intestines , Metabolome , Metabolomics , Animals , Chromatography, Liquid , Decapoda/microbiology , Metabolomics/methods , Tandem Mass Spectrometry
8.
Animals (Basel) ; 10(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276466

ABSTRACT

Wooden breast (WB) abnormality adversely impacts the quality of chicken meat and has been linked with oxidative stress. In this study, breast samples were taken from carcasses of 7-week-old Ross 308 broilers 20-min and 24-h postmortem. Five WB and seven non-WB control samples were assigned based on palpatory hardness (non-WB = no unusual characteristics and WB = focal or diffused hardness). WB exhibited lower contents of protein and the amino acids, i.e., isoleucine, leucine and valine, lighter surface color, lower shear force, greater drip loss and altered mineral profiles (p ≤ 0.05). Despite no difference in lipid oxidation, a greater degree of protein oxidation was found in the WB meat (p ≤ 0.05). Absolute transcript abundances of superoxide dismutase, hypoxia inducible factor 1 alpha and pyruvate dehydrogenase kinase 1 were greater in WB (p ≤ 0.05), whereas lactate dehydrogenase A expression was lower in WB (p ≤ 0.05). The findings support an association between oxidative stress and the altered nutritional and technological properties of chicken meat in WB.

9.
PeerJ ; 8: e9646, 2020.
Article in English | MEDLINE | ID: mdl-32864208

ABSTRACT

Understanding the correlation between shrimp growth and their intestinal bacteria would be necessary to optimize animal's growth performance. Here, we compared the bacterial profiles along with the shrimp's gene expression responses and metabolites in the intestines between the Top and the Bottom weight groups. Black tiger shrimp (Penaeus monodon) were collected from the same population and rearing environments. The two weight groups, the Top-weight group with an average weight of 36.82 ± 0.41 g and the Bottom-weight group with an average weight of 17.80 ± 11.81 g, were selected. Intestines were aseptically collected and subjected to microbiota, transcriptomic and metabolomic profile analyses. The weighted-principal coordinates analysis (PCoA) based on UniFrac distances showed similar bacterial profiles between the two groups, suggesting similar relative composition of the overall bacterial community structures. This observed similarity was likely due to the fact that shrimp were from the same genetic background and reared under the same habitat and diets. On the other hand, the unweighted-distance matrix revealed that the bacterial profiles associated in intestines of the Top-weight group were clustered distinctly from those of the Bottom-weight shrimp, suggesting that some unique non-dominant bacterial genera were found associated with either group. The key bacterial members associated to the Top-weight shrimp were mostly from Firmicutes (Brevibacillus and Fusibacter) and Bacteroidetes (Spongiimonas), both of which were found in significantly higher abundance than those of the Bottom-weight shrimp. Transcriptomic profile of shrimp intestines found significant upregulation of genes mostly involved in nutrient metabolisms and energy storage in the Top-weight shrimp. In addition to significantly expressed metabolic-related genes, the Bottom-weight shrimp also showed significant upregulation of stress and immune-related genes, suggesting that these pathways might contribute to different degrees of shrimp growth performance. A non-targeted metabolome analysis from shrimp intestines revealed different metabolic responsive patterns, in which the Top-weight shrimp contained significantly higher levels of short chain fatty acids, lipids and organic compounds than the Bottom-weight shrimp. The identified metabolites included those that were known to be produced by intestinal bacteria such as butyric acid, 4-indolecarbaldehyde and L-3-phenyllactic acid as well as those produced by shrimp such as acyl-carnitines and lysophosphatidylcholine. The functions of these metabolites were related to nutrient absorption and metabolisms. Our findings provide the first report utilizing multi-omics integration approach to investigate microbiota, metabolic and transcriptomics profiles of the host shrimp and their potential roles and relationship to shrimp growth performance.

10.
Front Physiol ; 11: 580, 2020.
Article in English | MEDLINE | ID: mdl-32612536

ABSTRACT

Development of the white striping (WS) abnormality adversely impacts overall quality of broiler breast meat. Its etiology remains unclear. This study aimed at exploring transcriptional profiles of broiler skeletal muscles exhibiting different WS severity to elucidate molecular mechanisms underlying the development and progression of WS. Total RNA was isolated from pectoralis major of male 7-week-old Ross 308 broilers. The samples were classified as mild (n = 6), moderate (n = 6), or severe (n = 4), based on number and thickness of the white striations on the meat surface. The transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique. Gene expression patterns of each WS severity level were compared against each other; hence, there were three comparisons: moderate vs. mild (C1), severe vs. moderate (C2), and severe vs. mild (C3). Differentially expressed genes (DEGs) were identified using the combined criteria of false discovery rate ≤ 0.05 and absolute fold change ≥1.2. Differential expression of 91, 136, and 294 transcripts were identified in C1, C2, and C3, respectively. There were no DEGs in common among the three comparisons. Based on pathway analysis, the enriched pathways of C1 were related with impaired homeostasis of macronutrients and small biochemical molecules with disrupted Ca2+-related pathways. Decreased abundance of the period circadian regulator suggested the shifted circadian phase when moderate WS developed. The enriched pathways uniquely obtained in C2 were RNA degradation, Ras signaling, cellular senescence, axon guidance, and salivary secretion. The DEGs identified in those pathways might play crucial roles in regulating cellular ion balances and cell-cycle arrest. In C3, the pathways responsible for phosphatidylinositol 3-kinase-Akt signaling, p53 activation, apoptosis, and hypoxia-induced processes were modified. Additionally, pathways associated with a variety of diseases with the DEGs involved in regulation of [Ca2+], collagen formation, microtubule-based motor, and immune response were identified. Eight pathways were common to all three comparisons (i.e., calcium signaling, Ras-associated protein 1 signaling, ubiquitin-mediated proteolysis, vascular smooth muscle contraction, oxytocin signaling, and pathway in cancer). The current findings support the role of intracellular ion imbalance, particularly Ca2+, oxidative stress, and impaired programmed cell death on WS progression.

11.
Sci Rep ; 10(1): 4896, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184459

ABSTRACT

Microbial colonization is an essential process in the early life of animal hosts-a crucial phase that could help influence and determine their health status at the later stages. The establishment of bacterial community in a host has been comprehensively studied in many animal models; however, knowledge on bacterial community associated with the early life stages of Penaeus monodon (the black tiger shrimp) is still limited. Here, we examined the bacterial community structures in four life stages (nauplius, zoea, mysis and postlarva) of two black tiger shrimp families using 16S rRNA amplicon sequencing by a next-generation sequencing. Although the bacterial profiles exhibited different patterns in each developmental stage, Bacteroidetes, Proteobacteria, Actinobacteria and Planctomycetes were identified as common bacterial phyla associated with shrimp. Interestingly, the bacterial diversity became relatively stable once shrimp developed to postlarvae (5-day-old and 15-day-old postlarval stages), suggesting an establishment of the bacterial community in matured shrimp. To our knowledge, this is the first report on bacteria establishment and assembly in early developmental stages of P. monodon. Our findings showed that the bacterial compositions could be shaped by different host developmental stages where the interplay of various host-associated factors, such as physiology, immune status and required diets, could have a strong influence.


Subject(s)
Penaeidae/microbiology , Animals , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
12.
PLoS One ; 14(8): e0220904, 2019.
Article in English | MEDLINE | ID: mdl-31393948

ABSTRACT

Development of white striping (WS) and wooden breast (WB) in broiler breast meat have been linked to hypoxia, but their etiologies are not fully understood. This study aimed at investigating absolute expression of hypoxia-inducible factor-1 alpha subunit (HIF1A) and genes involved in stress responses and muscle repair using a droplet digital polymerase chain reaction. Total RNA was isolated from pectoralis major collected from male 6-week-old medium (carcass weight ≤ 2.5 kg) and heavy (carcass weight > 2.5 kg) broilers. Samples were classified as "non-defective" (n = 4), "medium-WS" (n = 6), "heavy-WS" (n = 7) and "heavy-WS+WB" (n = 3) based on abnormality scores. The HIF1A transcript was up-regulated in all of the abnormal groups. Transcript abundances of genes encoding 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), lactate dehydrogenase-A (LDHA), and phosphorylase kinase beta subunit (PHKB) were increased in heavy-WS but decreased in heavy-WS+WB. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was up-regulated in non-defective samples. The muscle-specific mu-2 isoform of glutathione S-transferases (GSTM2) was up-regulated in the abnormal samples, particularly in the heavy groups. The genes encoding myogenic differentiation (MYOD1) and myosin light chain kinase (MYLK) exhibited similar expression pattern, of which medium-WS and heavy-WS significantly increased compared to non-defective whereas expression in heavy-WS+WB was not different from either non-defective or WS-affected group. The greatest and the lowest levels of calpain-3 (CAPN3) and delta-sarcoglycan (SCGD) were observed in heavy-WS and heavy-WS+WB, respectively. Based on micrographs, the abnormal muscles primarily comprised fibers with cross-sectional areas ranging from 2,000 to 3,000 µm2. Despite induced glycolysis at the transcriptional level, lower stored glycogen in the abnormal muscles corresponded with the reduced lactate and higher pH within their meats. The findings support hypoxia within the abnormal breasts, potentially associated with oversized muscle fibers. Between WS and WB, divergent glucose metabolism, cellular detoxification and myoregeneration at the transcriptional level could be anticipated.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Muscle, Skeletal/pathology , Muscular Diseases/genetics , RNA, Messenger/metabolism , Animals , Chickens , Gene Expression Regulation , Glycogen/metabolism , Hydrogen-Ion Concentration , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Male , Pectoralis Muscles , Poultry Diseases/etiology , RNA, Messenger/isolation & purification
13.
Asian-Australas J Anim Sci ; 31(11): 1807-1817, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30145875

ABSTRACT

OBJECTIVE: This study aimed at investigating white striping (WS) and wooden breast (WB) cases in breast meat collected from commercial broilers. METHODS: A total of 183 breast samples were collected from male Ross 308 broilers slaughtered at the age of 6 weeks (n = 100) and 7 weeks (n = 83). The breasts were subjected to meat defect inspection, meat quality determination and histology evaluation. RESULTS: Of 183, 4 breasts from 6-week-old broilers were classified as non-defective while the others exhibited the WS lesion. Among the 6-week-old birds, the defective samples from the medium size birds (carcass weight ≤2.5 kg) showed mild to moderate WS degree with no altered meat quality. Some of the breasts from the 6-week-old birds with carcass weight above 2.5 kg exhibited WB in accompanied with the WS condition. Besides of a reduction of protein content, increases in collagen matter and pH values in the defective samples (p<0.05), no other impaired quality indices were detected within this group. All 7-week-old broilers yielded carcasses weighing above 2.5 kg and showed abnormal characteristics with progressive severity. The breasts affected with severe WS and WB showed the greatest cook loss, hardness, springiness and chewiness (p<0.05). Development of WB induced significantly increased drip loss in the samples (p<0.05). Histology indicated necrotic events in the defective myofibers. Based on logistic regression, increasing percent breast weight by one unit enhanced the chance of WS and WB development with advanced severity by 50.9% and 61.0%, respectively. Delayed slaughter age from 6 to 7 weeks increased the likelihood of obtaining increased WS severity by 56.3%. CONCLUSION: Cases of WS and WB defects in Southeast Asia have been revealed. Despite few cases of the severe WS and WB, such abnormal conditions significantly impaired technological properties and nutritional quality of broiler breasts.

14.
J Biotechnol ; 260: 74-78, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28923715

ABSTRACT

Here, we developed a 9-plex bead-based array as a tool to evaluate molecular effects on transcription levels of immune-related genes in the black tiger shrimp (Penaeus monodon). The bead array technology allows simultaneous detection of multiple target genes in a single sample, reducing time, labor and cost. The oligonucleotide probes were designed to target eight immune-related genes that involve in antimicrobial activity, melanization, pathogen pattern recognition proteins, lysozyme and one housekeeping gene as an internal control. The nine probes were coupled to carboxylated-magnetic bead sets. The 9-plex PCR primers were designed and optimized for conditions to allow multiplex detection. The specificity of the assay was validated and the sensitivity was determined to be 103 copies/µL for all target genes. The 9-plex immune gene expression assay was applied to determine transcript levels in gills of P. monodon under exposure to a shrimp pathogen, Vibrio harveyi, and gene expression patterns were consistent to patterns observed under a traditional realtime PCR method. While realtime PCR method gave a better sensitivity but limited multiplexity, our 9-plex immune gene expression assay was able to simultaneously measure expression of multiple target genes, providing useful alternative assay in the need of higher-throughput gene expression analysis such as evaluation of immune stimulatory effects in different feed additives under various dosages and time points in shrimp.


Subject(s)
Gene Expression Profiling/methods , Immunity/genetics , Multiplex Polymerase Chain Reaction/methods , Penaeidae , Transcriptome/genetics , Adjuvants, Immunologic/pharmacology , Animals , Immunity/immunology , Penaeidae/drug effects , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/metabolism , Transcriptome/immunology
16.
Dev Comp Immunol ; 67: 18-29, 2017 02.
Article in English | MEDLINE | ID: mdl-27815179

ABSTRACT

CrustinPm1 and crustinPm7 are the two most abundant isoforms of crustins identified from the hemocytes of the black tiger shrimp, Penaeus monodon. CrustinPm1 inhibits only Gram-positive bacteria, while crustinPm7 acts against both Gram-positive and Gram-negative bacteria. This work aims to characterize the molecular properties of recombinant crustinPm1 and crustinPm7, and the regulatory pathways of these two crustins. Circular dichroism spectroscopy revealed that crustinPm1 contained 40.81% alpha-helix and 22.34% beta-sheet, whereas crustinPm7 is made up of 32.86% alpha-helix and 27.53% beta-sheet. CrustinPm1 and crustinPm7 bound to phosphatidic acid (PA) with positive cooperativity of Hill slope (H) > 2, indicating that at least two molecules of crustins bind with one PA molecule. It is worth noting that both crustins bound to PA with significantly higher affinity than to lipoteichoic acid (LTA) and lipopolysaccharide (LPS). We speculate that crustin might also achieve antimicrobial activity by targeting PA, a signaling lipid. Regulatory pathways of crustinPm1 and crustinPm7 were investigated by knockdown of PmRelish and PmMyD88. This study demonstrated that crustinPm1 is mediated through the Toll signaling pathway, while crustinPm7 is regulated via both Toll and Imd pathways.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Hemocytes/immunology , Penaeidae/immunology , Animals , Antimicrobial Cationic Peptides/genetics , Cells, Cultured , Drosophila Proteins/genetics , Gene Knockdown Techniques , Myeloid Differentiation Factor 88/genetics , Phosphatidic Acids/metabolism , Protein Binding , Protein Conformation , Signal Transduction/genetics , Toll-Like Receptors/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...