Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 32(2): 228-241.e4, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38113889

ABSTRACT

Major histocompatibility complex (MHC) proteins present peptides on the cell surface for T cell surveillance. Reliable in silico prediction of which peptides would be presented and which T cell receptors would recognize them is an important problem in structural immunology. Here, we introduce an AlphaFold-based pipeline for predicting the three-dimensional structures of peptide-MHC complexes for class I and class II MHC molecules. Our method demonstrates high accuracy, outperforming existing tools in class I modeling accuracy and class II peptide register prediction. We validate its performance and utility with new experimental data on a recently described cancer neoantigen/wild-type peptide pair and explore applications toward improving peptide-MHC binding prediction.


Subject(s)
Histocompatibility Antigens Class II , Peptides , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Peptides/chemistry , Protein Binding , T-Lymphocytes/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism
2.
Proc Natl Acad Sci U S A ; 120(51): e2312057120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38085776

ABSTRACT

Neoepitopes arising from amino acid substitutions due to single nucleotide polymorphisms are targets of T cell immune responses to cancer and are of significant interest in the development of cancer vaccines. However, understanding the characteristics of rare protective neoepitopes that truly control tumor growth has been a challenge, due to their scarcity as well as the challenge of verifying true, neoepitope-dependent tumor control in humans. Taking advantage of recent work in mouse models that circumvented these challenges, here, we compared the structural and physical properties of neoepitopes that range from fully protective to immunologically inactive. As neoepitopes are derived from self-peptides that can induce immune tolerance, we studied not only how the various neoepitopes differ from each other but also from their wild-type counterparts. We identified multiple features associated with protection, including features that describe how neoepitopes differ from self as well as features associated with recognition by diverse T cell receptor repertoires. We demonstrate both the promise and limitations of neoepitope structural analysis and predictive modeling and illustrate important aspects that can be incorporated into neoepitope prediction pipelines.


Subject(s)
Neoplasms , Humans , Animals , Mice , Epitopes , Neoplasms/genetics , T-Lymphocytes , Peptides/metabolism , Antigens, Neoplasm
3.
Nat Commun ; 13(1): 7189, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36424374

ABSTRACT

MHC restriction, which describes the binding of TCRs from CD4+ T cells to class II MHC proteins and TCRs from CD8+ T cells to class I MHC proteins, is a hallmark of immunology. Seemingly rare TCRs that break this paradigm exist, but mechanistic insight into their behavior is lacking. TIL1383I is a prototypical class-mismatched TCR, cloned from a CD4+ T cell but recognizing the tyrosinase tumor antigen presented by the class I MHC HLA-A2 in a fully functional manner. Here we find that TIL1383I binds this class I target with a highly atypical geometry. Despite unorthodox binding, TCR signaling, antigen specificity, and the ability to use CD8 are maintained. Structurally, a key feature of TIL1383I is an exceptionally long CDR3ß loop that mediates functions that are traditionally performed separately by hypervariable and germline loops in canonical TCR structures. Our findings thus expand the range of known TCR binding geometries compatible with normal function and specificity, provide insight into the determinants of MHC restriction, and may help guide TCR selection and engineering for immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Cell Membrane , Engineering , HLA-A2 Antigen/genetics
4.
Front Immunol ; 10: 2047, 2019.
Article in English | MEDLINE | ID: mdl-31555277

ABSTRACT

The development of immunological therapies that incorporate peptide antigens presented to T cells by MHC proteins is a long sought-after goal, particularly for cancer, where mutated neoantigens are being explored as personalized cancer vaccines. Although neoantigens can be identified through sequencing, bioinformatics and mass spectrometry, identifying those which are immunogenic and able to promote tumor rejection remains a significant challenge. Here we examined the potential of high-resolution structural modeling followed by energetic scoring of structural features for predicting neoantigen immunogenicity. After developing a strategy to rapidly and accurately model nonameric peptides bound to the common class I MHC protein HLA-A2, we trained a neural network on structural features that influence T cell receptor (TCR) and peptide binding energies. The resulting structurally-parameterized neural network outperformed methods that do not incorporate explicit structural or energetic properties in predicting CD8+ T cell responses of HLA-A2 presented nonameric peptides, while also providing insight into the underlying structural and biophysical mechanisms governing immunogenicity. Our proof-of-concept study demonstrates the potential for structure-based immunogenicity predictions in the development of personalized peptide-based vaccines.


Subject(s)
Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Immunity , Neoplasms/etiology , Area Under Curve , Binding Sites , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Susceptibility , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/immunology , Humans , Models, Molecular , Molecular Conformation , Peptides/chemistry , Peptides/immunology , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...