Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Stem Cells ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825983

ABSTRACT

The transformation from a fibroblast mesenchymal cell state to an epithelial-like state is critical for Induced Pluripotent Stem Cell (iPSC) reprogramming. In this report, we describe studies with PFI-3, a small molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunits of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings reveal that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition (MET) during iPSC formation. This transition is characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.

2.
Nat Commun ; 15(1): 4561, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811575

ABSTRACT

The mammalian SWI/SNF-like BAF complexes play critical roles during animal development and pathological conditions. Previous gene deletion studies and characterization of human gene mutations implicate that the complexes both repress and activate a large number of genes. However, the direct function of the complexes in cells remains largely unclear due to the relatively long-term nature of gene deletion or natural mutation. Here we generate a mouse line by knocking in the auxin-inducible degron tag (AID) to the Smarca4 gene, which encodes BRG1, the essential ATPase subunit of the BAF complexes. We show that the tagged BRG1 can be efficiently depleted by osTIR1 expression and auxin treatment for 6 to 10 h in CD4 + T cells, hepatocytes, and fibroblasts isolated from the knock-in mice. The acute depletion of BRG1 leads to decreases in nascent RNAs and RNA polymerase II binding at a large number of genes, which are positively correlated with the loss of BRG1. Further, these changes are correlated with diminished accessibility at DNase I Hypersensitive Sites (DHSs) and p300 binding. The acute BRG1 depletion results in three major patterns of nucleosome shifts leading to narrower nucleosome spacing surrounding transcription factor motifs and at enhancers and transcription start sites (TSSs), which are correlated with loss of BRG1, decreased chromatin accessibility and decreased nascent RNAs. Acute depletion of BRG1 severely compromises the Trichostatin A (TSA) -induced histone acetylation, suggesting a substantial interplay between the chromatin remodeling activity of BRG1 and histone acetylation. Our data suggest BRG1 mainly plays a direct positive role in chromatin accessibility, RNAPII binding, and nascent RNA production by regulating nucleosome positioning and facilitating transcription factor binding to their target sites.


Subject(s)
DNA Helicases , Nuclear Proteins , Transcription Factors , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mice , Nucleosomes/metabolism , Nucleosomes/genetics , Indoleacetic Acids/metabolism , RNA Polymerase II/metabolism , Fibroblasts/metabolism , Gene Knock-In Techniques , Hepatocytes/metabolism , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Transcriptional Activation , Transcription, Genetic , Histones/metabolism , Deoxyribonuclease I/metabolism , Chromatin/metabolism , Humans
3.
Cancer Res Commun ; 4(4): 1082-1099, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625038

ABSTRACT

The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE: Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.


Subject(s)
Chromatin , Neoplasms , Chromatin/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Proteolysis , Genomics
4.
Sci Adv ; 10(9): eadj5107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427725

ABSTRACT

Cell fate decisions are achieved with gene expression changes driven by lineage-specific transcription factors (TFs). These TFs depend on chromatin remodelers including the Brahma-related gene 1 (BRG1)-associated factor (BAF) complex to activate target genes. BAF complex subunits are essential for development and frequently mutated in cancer. Thus, interrogating how BAF complexes contribute to cell fate decisions is critical for human health. We examined the requirement for the catalytic BAF subunit BRG1 in neural progenitor cell (NPC) specification from human embryonic stem cells. During the earliest stages of differentiation, BRG1 was required to establish chromatin accessibility at neuroectoderm-specific enhancers. Depletion of BRG1 dorsalized NPCs and promoted precocious neural crest specification and enhanced neuronal differentiation. These findings demonstrate that BRG1 mediates NPC specification by ensuring proper expression of lineage-specific TFs and appropriate activation of their transcriptional programs.


Subject(s)
Chromatin , Neural Plate , Humans , Chromatin/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Neural Plate/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism
5.
Geroscience ; 46(2): 2425-2439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37985642

ABSTRACT

Although aging has been investigated extensively at the organismal and cellular level, the morphological changes that individual cells undergo along their replicative lifespan have not been precisely quantified. Here, we present the results of a readily accessible machine learning-based pipeline that uses standard fluorescence microscope and open access software to quantify the minute morphological changes that human fibroblasts undergo during their replicative lifespan in culture. Applying this pipeline in a widely used fibroblast cell line (IMR-90), we find that advanced replicative age robustly increases (+28-79%) cell surface area, perimeter, number and total length of pseudopodia, and nuclear surface area, while decreasing cell circularity, with phenotypic changes largely occurring as replicative senescence is reached. These senescence-related morphological changes are recapitulated, albeit to a variable extent, in primary dermal fibroblasts derived from human donors of different ancestry, age, and sex groups. By performing integrative analysis of single-cell morphology, our pipeline further classifies senescent-like cells and quantifies how their numbers increase with replicative senescence in IMR-90 cells and in dermal fibroblasts across all tested donors. These findings provide quantitative insights into replicative senescence, while demonstrating applicability of a readily accessible computational pipeline for high-throughput cell phenotyping in aging research.


Subject(s)
Aging , Cellular Senescence , Humans , Cells, Cultured , Fibroblasts
6.
bioRxiv ; 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37873209

ABSTRACT

The transformation of fibroblasts into epithelial cells is critical for iPSC reprogramming. In this report, we describe studies with PFI-3, a small molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunit of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings revealed that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition (MET) during iPSC formation. This transition was characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.

7.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37904968

ABSTRACT

The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNAPII transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed Differentially Open Chromatin Regions (DOCRs). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic super enhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. Highlights: Proteasome inhibition uncovers de novo Differential Open Chromatin Regions (DOCRs) in breast cancer cells. Proteasome inhibitor sensitive promoters exhibit a distinctive chromatin architecture with discrete transcription initiation patterns.Proteasome inhibition reprograms accessibility of super enhancers.Proteasome inhibitor sensitive super enhancers distinguish basal from non-basal breast cancer subtypes.

8.
Life Sci Alliance ; 6(5)2023 05.
Article in English | MEDLINE | ID: mdl-36801810

ABSTRACT

The SWI/SNF complex remodels chromatin in an ATP-dependent manner through the subunits BRG1 and BRM. Chromatin remodeling alters nucleosome structure to change gene expression; however, aberrant remodeling can result in cancer. We identified BCL7 proteins as critical SWI/SNF members that drive BRG1-dependent gene expression changes. BCL7s have been implicated in B-cell lymphoma, but characterization of their functional role within the SWI/SNF complex has been limited. This study implicates their function alongside BRG1 to drive large-scale changes in gene expression. Mechanistically, the BCL7 proteins bind to the HSA domain of BRG1 and require this domain for binding to chromatin. BRG1 proteins without the HSA domain fail to interact with the BCL7 proteins and have severely reduced chromatin remodeling activity. These results link the HSA domain and the formation of a functional SWI/SNF remodeling complex through the interaction with BCL7 proteins. These data highlight the importance of correct formation of the SWI/SNF complex to drive critical biological functions, as losses of individual accessory members or protein domains can cause loss of complex function.


Subject(s)
Chromosomal Proteins, Non-Histone , Neoplasms , Humans , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromatin Assembly and Disassembly/genetics , Chromatin , Gene Expression
9.
Biomedicines ; 10(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36551872

ABSTRACT

Microglial cells polarized towards a proinflammatory phenotype are considered the main cellular players of neuroinflammation, underlying several neurodegenerative diseases. Many studies have suggested that imbalance of the gut microbial composition is associated with an increase in the pro-inflammatory cytokines and oxidative stress that underlie chronic neuroinflammatory diseases, and perturbations to the gut microbiota were detected in neurodegenerative conditions such as Parkinson's disease and Alzheimer's disease. The importance of gut-brain axis has been uncovered and the relevance of an appropriate microbiota balance has been highlighted. Probiotic treatment, rebalancing the gut microbioma, may reduce inflammation. We show that Milmed yeast, obtained from S. cerevisiae after exposure to electromagnetic millimeter wavelengths, induces a reversal of LPS-M1 polarized microglia towards an anti-inflammatory phenotype, as demonstrated morphologically by the recovery of resting phenotype by microglia, by the decrease in the mRNAs of IL-1ß, IL-6, TNF-α and in the expression of iNOS. Moreover, Milmed stimulated the secretion of IL-10 and the expression of Arginase-1, cell markers of M2 anti-inflammatory polarized cells. The present findings data suggest that Milmed may be considered to be a probiotic with diversified anti-inflammatory activity, capable of directing the polarization of microglial cells.

10.
iScience ; 25(9): 104960, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36065188

ABSTRACT

Chronic environmental stress can profoundly impact cell and body function. Although the underlying mechanisms are poorly understood, epigenetics has emerged as a key link between environment and health. The genomic effects of stress are thought to be mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans, which act via the glucocorticoid receptor (GR). To dissect how chronic stress-driven GR activation influences epigenetic and cell states, human fibroblasts underwent prolonged exposure to physiological stress levels of cortisol and/or a selective GR antagonist. Cortisol was found to drive robust changes in cell proliferation, migration, and morphology, which were abrogated by concomitant GR blockade. The GR-driven cell phenotypes were accompanied by widespread, yet genomic context-dependent, changes in DNA methylation and mRNA expression, including gene loci with known roles in cell proliferation and migration. These findings provide insights into how chronic stress-driven functional epigenomic patterns become established to shape key cell phenotypes.

11.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35192692

ABSTRACT

A major topic of debate in developmental biology centers on whether development is continuous, discontinuous, or a mixture of both. Pseudo-time trajectory models, optimal for visualizing cellular progression, model cell transitions as continuous state manifolds and do not explicitly model real-time, complex, heterogeneous systems and are challenging for benchmarking with temporal models. We present a data-driven framework that addresses these limitations with temporal single-cell data collected at discrete time points as inputs and a mixture of dependent minimum spanning trees (MSTs) as outputs, denoted as dynamic spanning forest mixtures (DSFMix). DSFMix uses decision-tree models to select genes that account for variations in multimodality, skewness and time. The genes are subsequently used to build the forest using tree agglomerative hierarchical clustering and dynamic branch cutting. We first motivate the use of forest-based algorithms compared to single-tree approaches for visualizing and characterizing developmental processes. We next benchmark DSFMix to pseudo-time and temporal approaches in terms of feature selection, time correlation, and network similarity. Finally, we demonstrate how DSFMix can be used to visualize, compare and characterize complex relationships during biological processes such as epithelial-mesenchymal transition, spermatogenesis, stem cell pluripotency, early transcriptional response from hormones and immune response to coronavirus disease. Our results indicate that the expression of genes during normal development exhibits a high proportion of non-uniformly distributed profiles that are mostly right-skewed and multimodal; the latter being a characteristic of major steady states during development. Our study also identifies and validates gene signatures driving complex dynamic processes during somatic or germline differentiation.


Subject(s)
Benchmarking , Models, Theoretical , Single-Cell Analysis/methods , Algorithms , Animals , Cellular Microenvironment , Data Analysis , Decision Trees , Gene Expression Profiling/methods , Humans , Spermatogenesis
12.
Mol Cell ; 82(4): 803-815.e5, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35077705

ABSTRACT

The hormone-stimulated glucocorticoid receptor (GR) modulates transcription by interacting with thousands of enhancers and GR binding sites (GBSs) throughout the genome. Here, we examined the effects of GR binding on enhancer dynamics and investigated the contributions of individual GBSs to the hormone response. Hormone treatment resulted in genome-wide reorganization of the enhancer landscape in breast cancer cells. Upstream of the DDIT4 oncogene, GR bound to four sites constituting a hormone-dependent super enhancer. Three GBSs were required as hormone-dependent enhancers that differentially promoted histone acetylation, transcription frequency, and burst size. Conversely, the fourth site suppressed transcription and hormone treatment alleviated this suppression. GR binding within the super enhancer promoted a loop-switching mechanism that allowed interaction of the DDIT4 TSS with the active GBSs. The unique functions of each GR binding site contribute to hormone-induced transcriptional heterogeneity and demonstrate the potential for targeted modulation of oncogene expression.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Dexamethasone/pharmacology , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Receptors, Glucocorticoid/agonists , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Binding Sites , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Signal Transduction , Transcription Factors/genetics
13.
Cell ; 184(12): 3075-3079, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34115967

ABSTRACT

NIH has acknowledged and committed to ending structural racism. The framework for NIH's approach, summarized here, includes understanding barriers; developing robust health disparities/equity research; improving its internal culture; being transparent and accountable; and changing the extramural ecosystem so that diversity, equity, and inclusion are reflected in funded research and the biomedical workforce.


Subject(s)
Biomedical Research , National Institutes of Health (U.S.) , Systemic Racism , Cultural Diversity , Humans , Research Support as Topic/economics , United States
14.
Epigenetics ; 16(3): 289-299, 2021 03.
Article in English | MEDLINE | ID: mdl-32660355

ABSTRACT

Studies have suggested that abrogated expression of detoxification enzymes, UGT2B15 and UGT2B17, are associated with prostate tumour risk and progression. We investigated the role of EGF on the expression of these enzymes since it interacts with signalling pathways to also affect prostate tumour progression and is additionally associated with decreased DNA methylation. The expression of UGT2B15, UGT2B17, de novo methyltransferases, DNMT3A and DNMT3B was assessed in prostate cancer cells (LNCaP) treated with EGF, an EGFR inhibitor PD16893, and the methyltransferase inhibitor, 5-azacytidine, respectively. The results showed that EGF treatment decreased levels of expression of all four genes and that their expression was reversed by PD16893. Treatment with 5-azacytidine, markedly decreased expression of UGT2B15 and UGT2B17 over 85% as well as significantly decreased expression of DNMT3B, but not the expression of DNMT3A. DNMT3B siRNA treated LNCaP cells had decreased expression of UGT2B15 and UGT2B17, while DNMT3A siRNA treated cells had only moderately decreased UGT2B15 expression. Treatment with DNMT methyltransferase inhibitor, RG108, significantly decreased UGT2B17 expression. Additionally, methylation differences between prostate cancer samples and benign prostate samples from an Illumina 450K Methylation Array study were assessed. The results taken together suggest that hypomethylation of the UGT2B15 and UGT2B17 genes contributes to increased risk of prostate cancer and may provide a putative biomarker or epigenetic target for chemotherapeutics. Mechanistic studies are warranted to determine the role of the methylation marks in prostate cancer.


Subject(s)
DNA Methylation , Glucuronosyltransferase , Prostatic Neoplasms , Gene Expression Regulation, Neoplastic , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Humans , Male , Minor Histocompatibility Antigens/genetics , Prostatic Neoplasms/genetics
15.
Sci Adv ; 6(47)2020 11.
Article in English | MEDLINE | ID: mdl-33219026

ABSTRACT

Induced pluripotent stem cells (iPSCs) can be derived from differentiated cells, enabling the generation of personalized disease models by differentiating patient-derived iPSCs into disease-relevant cell lines. While genetic variability between different iPSC lines affects differentiation potential, how this variability in somatic cells affects pluripotent potential is less understood. We generated and compared transcriptomic data from 72 dermal fibroblast-iPSC pairs with consistent variation in reprogramming efficiency. By considering equal numbers of samples from self-reported African Americans and White Americans, we identified both ancestry-dependent and ancestry-independent transcripts associated with reprogramming efficiency, suggesting that transcriptomic heterogeneity can substantially affect reprogramming. Moreover, reprogramming efficiency-associated genes are involved in diverse dynamic biological processes, including cancer and wound healing, and are predictive of 5-year breast cancer survival in an independent cohort. Candidate genes may provide insight into mechanisms of ancestry-dependent regulation of cell fate transitions and motivate additional studies for improvement of reprogramming.


Subject(s)
Biological Phenomena , Induced Pluripotent Stem Cells , Cell Differentiation/genetics , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Transcriptome
16.
Commun Biol ; 3(1): 126, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170217

ABSTRACT

Steroid hormone receptors such as the Glucocorticoid Receptor (GR) mediate transcriptional responses to hormones and are frequently targeted in the treatment of human diseases. Experiments using bulk populations of cells have provided a detailed picture of the global transcriptional hormone response but are unable to interrogate cell-to-cell transcriptional heterogeneity. To examine the glucocorticoid response in individual cells, we performed single cell RNA sequencing (scRNAseq) in a human breast cancer cell line. The transcriptional response to hormone was robustly detected in individual cells and scRNAseq provided additional statistical power to identify over 100 GR-regulated genes that were not detected in bulk RNAseq. scRNAseq revealed striking cell-to-cell variability in the hormone response. On average, individual hormone-treated cells showed a response at only 30% of the total set of GR target genes. Understanding the basis of this heterogeneity will be critical for the development of more precise models of steroid hormone signaling.


Subject(s)
Breast Neoplasms/genetics , Dexamethasone/pharmacology , Genetic Heterogeneity/drug effects , Glucocorticoids/pharmacology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Receptors, Glucocorticoid/genetics , Transcription, Genetic/drug effects
17.
Curr Opin Endocr Metab Res ; 15: 8-14, 2020 Dec.
Article in English | MEDLINE | ID: mdl-35128145

ABSTRACT

Breast cancers are a diverse group of diseases and are often characterized by their expression of receptors for hormones such as estrogen and progesterone. Recently another steroid hormone receptor, the glucocorticoid receptor (GR) has been shown to be a key player in breast cancer progression, metastasis, and treatment. These receptors bind to chromatin to elicit transcriptional changes within cells, which are often inhibited by the structure of chromatin itself. Chromatin remodeling proteins, such as Brahma-related gene 1 (BRG1), function to overcome this physical inhibition of transcription factor function and have been linked to many cancers including breast cancer. Recent efforts to understand the interactions of BRG1 and GR, including genomic and single cell analyses, within breast cancers may give insight into personalized medicine and other potential treatments.

18.
J Biol Chem ; 295(5): 1271-1287, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31806706

ABSTRACT

Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.


Subject(s)
Chromatin/metabolism , Epigenesis, Genetic/drug effects , Leupeptins/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , RNA Polymerase II/metabolism , Transcription, Genetic/drug effects , Acetylation , Chromatin/drug effects , Chromatin/genetics , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Chromatin Immunoprecipitation Sequencing , Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Humans , MCF-7 Cells , Nucleosomes/metabolism , Phosphorylation , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/genetics , Protein Domains/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Initiation Site/drug effects
19.
Elife ; 82019 04 29.
Article in English | MEDLINE | ID: mdl-31033435

ABSTRACT

The SWI/SNF complex is a critical regulator of pluripotency in human embryonic stem cells (hESCs), and individual subunits have varied and specific roles during development and in diseases. The core subunit SMARCB1 is required for early embryonic survival, and mutations can give rise to atypical teratoid/rhabdoid tumors (AT/RTs) in the pediatric central nervous system. We report that in contrast to other studied systems, SMARCB1 represses bivalent genes in hESCs and antagonizes chromatin accessibility at super-enhancers. Moreover, and consistent with its established role as a CNS tumor suppressor, we find that SMARCB1 is essential for neural induction but dispensable for mesodermal or endodermal differentiation. Mechanistically, we demonstrate that SMARCB1 is essential for hESC super-enhancer silencing in neural differentiation conditions. This genomic assessment of hESC chromatin regulation by SMARCB1 reveals a novel positive regulatory function at super-enhancers and a unique lineage-specific role in regulating hESC differentiation.


Subject(s)
Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic/genetics , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Cell Differentiation/genetics , Child , Chromatin/genetics , Endoderm , Gene Knockdown Techniques , Genes, Tumor Suppressor , Humans , Mesoderm , Mutation/genetics , Rhabdoid Tumor/genetics
20.
Stem Cells ; 36(11): 1697-1708, 2018 11.
Article in English | MEDLINE | ID: mdl-30152570

ABSTRACT

Epigenetic enzymes regulate higher-order chromatin architecture and cell-type specific gene expression. The ATPase BRG1 and the SWI/SNF chromatin remodeling complex are epigenetic enzymes that regulate chromatin accessibility during steady and transitional cell states. Experiments in mice show that the loss of BRG1 inhibits cellular reprogramming, while studies using human cells demonstrate that the overexpression of BRG1 enhances reprogramming. We hypothesized that the variation of SWI/SNF subunit expression in the human population would contribute to variability in the efficiency of induced pluripotent stem cells (iPSC) reprogramming. To examine the impact of an individual's sex, ancestry, and age on iPSC reprogramming, we created a novel sex and ancestry balanced cohort of 240 iPSC lines derived from human dermal fibroblasts (DF) from 80 heathy donors. We methodically assessed the reprogramming efficiency of each DF line and then quantified the individual and demographic-specific variations in SWI/SNF chromatin remodeling proteins and mRNA expression. We identified BRG1, BAF155, and BAF60a expression as strongly correlating with iPSC reprogramming efficiency. Additionally, we discovered that high efficiency iPSC reprograming is negatively correlated with donor age, positively correlated with African American descent, and uncorrelated with donor sex. These results show the variations in chromatin remodeling protein expression have a strong impact on iPSC reprogramming. Additionally, our cohort is unique in its large size, diversity, and focus on healthy donors. Consequently, this cohort can be a vital tool for researchers seeking to validate observational results from human population studies and perform detailed mechanistic studies in a controlled cell culture environment. Stem Cells 2018;36:1697-1708.


Subject(s)
Cellular Reprogramming/genetics , Epigenomics/methods , Gene Expression/genetics , Induced Pluripotent Stem Cells/metabolism , Adult , Animals , Female , Humans , Male , Mice , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL