Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters










Publication year range
1.
Nat Genet ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693345

ABSTRACT

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

2.
J Virol ; 98(5): e0190123, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38629840

ABSTRACT

Many viruses inhibit general host gene expression to limit innate immune responses and gain preferential access to the cellular translational apparatus for their protein synthesis. This process is known as host shutoff. Influenza A viruses (IAVs) encode two host shutoff proteins: nonstructural protein 1 (NS1) and polymerase acidic X (PA-X). NS1 inhibits host nuclear pre-messenger RNA maturation and export, and PA-X is an endoribonuclease that preferentially cleaves host spliced nuclear and cytoplasmic messenger RNAs. Emerging evidence suggests that in circulating human IAVs NS1 and PA-X co-evolve to ensure optimal magnitude of general host shutoff without compromising viral replication that relies on host cell metabolism. However, the functional interplay between PA-X and NS1 remains unexplored. In this study, we sought to determine whether NS1 function has a direct effect on PA-X activity by analyzing host shutoff in A549 cells infected with wild-type or mutant IAVs with NS1 effector domain deletion. This was done using conventional quantitative reverse transcription polymerase chain reaction techniques and direct RNA sequencing using nanopore technology. Our previous research on the molecular mechanisms of PA-X function identified two prominent features of IAV-infected cells: nuclear accumulation of cytoplasmic poly(A) binding protein (PABPC1) and increase in nuclear poly(A) RNA abundance relative to the cytoplasm. Here we demonstrate that NS1 effector domain function augments PA-X host shutoff and is necessary for nuclear PABPC1 accumulation. By contrast, nuclear poly(A) RNA accumulation is not dependent on either NS1 or PA-X-mediated host shutoff and is accompanied by nuclear retention of viral transcripts. Our study demonstrates for the first time that NS1 and PA-X may functionally interact in mediating host shutoff.IMPORTANCERespiratory viruses including the influenza A virus continue to cause annual epidemics with high morbidity and mortality due to the limited effectiveness of vaccines and antiviral drugs. Among the strategies evolved by viruses to evade immune responses is host shutoff-a general blockade of host messenger RNA and protein synthesis. Disabling influenza A virus host shutoff is being explored in live attenuated vaccine development as an attractive strategy for increasing their effectiveness by boosting antiviral responses. Influenza A virus encodes two proteins that function in host shutoff: the nonstructural protein 1 (NS1) and the polymerase acidic X (PA-X). We and others have characterized some of the NS1 and PA-X mechanisms of action and the additive effects that these viral proteins may have in ensuring the blockade of host gene expression. In this work, we examined whether NS1 and PA-X functionally interact and discovered that NS1 is required for PA-X to function effectively. This work significantly advances our understanding of influenza A virus host shutoff and identifies new potential targets for therapeutic interventions against influenza and further informs the development of improved live attenuated vaccines.


Subject(s)
Influenza A virus , Viral Nonstructural Proteins , Virus Replication , Humans , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , A549 Cells , Influenza A virus/genetics , Host-Pathogen Interactions , Influenza, Human/virology , Influenza, Human/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
PLoS Biol ; 22(4): e3002581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593123

ABSTRACT

Symbiosis is an old idea with a contentious history. New genomic technologies and research paradigms are fueling a shift in some of its central tenets; we need to be humble and open-minded about what the data are telling us.


Subject(s)
Genomics , Symbiosis , Symbiosis/genetics
4.
Curr Biol ; 33(23): 5199-5207.e4, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37913769

ABSTRACT

Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.


Subject(s)
Viruses , DNA, Ribosomal , Genome , Heterochromatin , Eukaryota , Telomere , Phylogeny
5.
Proc Natl Acad Sci U S A ; 120(49): e2306381120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38019867

ABSTRACT

Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.


Subject(s)
Inteins , Protein Splicing , Inteins/genetics , Eukaryota/genetics , Proteins/genetics , Genome
6.
bioRxiv ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778228

ABSTRACT

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

7.
Genome Biol Evol ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36805209

ABSTRACT

Thraustochytrids (phylum: Labyrinthulomycota) are nonphotosynthetic marine protists. Some thraustochytrids have crtIBY, a trifunctional fusion gene encoding a protein capable of ß-carotene biosynthesis from geranylgeranyl pyrophosphate. Here we show that crtIBY is essential in, and encodes the sole pathway for, carotenoid biosynthesis in the thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381. We explore the evolutionary origins of CrtIBY and discover that the closest related protein domains are present in a small but diverse group of other heterotrophic protists, including the apusomonad Thecamonas trahens and the dinoflagellates Oxyrrhis marina and Noctiluca scintillans. Each organism within this cluster also contains one or more ß-carotene 15-15' oxygenase genes (blh and rpe65), suggesting that the acquisition of ß-carotene biosynthesis genes may have been related to the production of retinal. Our findings support a novel origin of eukaryotic (apo)carotenoid biosynthesis by horizontal gene transfer from Actinobacteria, Bacteroidetes, and/or Archaea. This reveals a remarkable case of parallel evolution of eukaryotic (apo)carotenogenesis in divergent protistan lineages by repeated gene transfers.


Subject(s)
Carotenoids , Stramenopiles , beta Carotene/genetics , Gene Transfer, Horizontal , Bacteria/genetics
8.
STAR Protoc ; 4(1): 102014, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36633953

ABSTRACT

Many tools have been developed to measure the degree of similarity between gene duplicates within and between species. Here, we present HSDecipher, a bioinformatics pipeline to assist users in the analysis and visualization of highly similar duplicate genes (HSDs). We describe the steps for analysis of HSDs statistics, expanding HSD gene sets, and visualizing the results of comparative genomic analyses. HSDecipher represents a useful tool for researchers exploring the evolution of duplicate genes in select eukaryotic species. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021)1 and Zhang et al. (2022).2.


Subject(s)
Eukaryota , Genes, Duplicate , Eukaryota/genetics , Genes, Duplicate/genetics , Genome/genetics , Eukaryotic Cells , Genomics/methods
9.
BMC Biol ; 20(1): 227, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209116

ABSTRACT

BACKGROUND: Cryptophytes are ecologically important algae of interest to evolutionary cell biologists because of the convoluted history of their plastids and nucleomorphs, which are derived from red algal secondary endosymbionts. To better understand the evolution of the cryptophyte nucleomorph, we sequenced nucleomorph genomes from two photosynthetic and two non-photosynthetic species in the genus Cryptomonas. We performed a comparative analysis of these four genomes and the previously published genome of the non-photosynthetic species Cryptomonas paramecium CCAP977/2a. RESULTS: All five nucleomorph genomes are similar in terms of their general architecture, gene content, and gene order and, in the non-photosynthetic strains, loss of photosynthesis-related genes. Interestingly, in terms of size and coding capacity, the nucleomorph genome of the non-photosynthetic species Cryptomonas sp. CCAC1634B is much more similar to that of the photosynthetic C. curvata species than to the non-photosynthetic species C. paramecium. CONCLUSIONS: Our results reveal fine-scale nucleomorph genome variation between distantly related congeneric taxa containing photosynthetic and non-photosynthetic species, including recent pseudogene formation, and provide a first glimpse into the possible impacts of the loss of photosynthesis on nucleomorph genome coding capacity and structure in independently evolved colorless strains.


Subject(s)
Cryptophyta , Genome , Cryptophyta/genetics , Genomics , Photosynthesis , Phylogeny , Plastids/genetics
10.
Genome Res ; 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109147

ABSTRACT

The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic environments, where it preys on bacteria. The organism also hosts bacterial endosymbionts, some of which are parasitic, including human pathogens such as Chlamydia and Legionella spp. Here we report complete, high-quality genome sequences for two extensively studied A. castellanii strains, Neff and C3. Combining long- and short-read data with Hi-C, we generated near chromosome-level assemblies for both strains with 90% of the genome contained in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics revealed strain-specific functional enrichment, most notably genes related to signal transduction in the C3 strain and to viral replication in Neff. Furthermore, we characterized the spatial organization of the A. castellanii genome and showed that it is reorganized during infection by Legionella pneumophila Infection-dependent chromatin loops were found to be enriched in genes for signal transduction and phosphorylation processes. In genomic regions where chromatin organization changed during Legionella infection, we found functional enrichment for genes associated with metabolism, organelle assembly, and cytoskeleton organization. Given Legionella infection is known to alter its host's cell cycle, to exploit the host's organelles, and to modulate the host's metabolism in its favor, these changes in chromatin organization may partly be related to mechanisms of host control during Legionella infection.

11.
Curr Biol ; 32(20): 4473-4482.e7, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36055238

ABSTRACT

The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.2-6 Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnematophytes, their internal phylogeny remains largely unresolved.7,8 There are also putative zygnematophytes with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain unknown. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enigmatic alga that was described more than 120 years ago9 but never subjected to molecular analyses. We generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phylogenomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in a deep-branching zygnematophycean clade together with some unicellular species and thus represents a formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny provides a robust and comprehensive framework for performing comparative analyses and inferring the evolution of cellular traits and body plans in the closest relatives of land plants.


Subject(s)
Charophyceae , Embryophyta , Streptophyta , Phylogeny , Biological Evolution , Embryophyta/genetics , Charophyceae/genetics , Plants , Soil
12.
Front Plant Sci ; 13: 896138, 2022.
Article in English | MEDLINE | ID: mdl-35769291

ABSTRACT

The Raphidophyceae is an ecologically important eukaryotic lineage of primary producers and predators that inhabit marine and freshwater environments worldwide. These organisms are of great evolutionary interest because their plastids are the product of eukaryote-eukaryote endosymbiosis. To obtain deeper insight into the evolutionary history of raphidophycean plastids, we sequenced and analyzed the plastid genomes of three freshwater and three marine species. Our comparison of these genomes, together with the previously reported plastid genome of Heterosigma akashiwo, revealed unexpected variability in genome structure. Unlike the genomes of other analyzed species, the plastid genome of Gonyostomum semen was found to contain only a single rRNA operon, presumably due to the loss of genes from the inverted repeat (IR) region found in most plastid genomes. In contrast, the marine species Fibrocapsa japonica contains the largest IR region and overall plastid genome for any raphidophyte examined thus far, mainly due to the presence of four large gene-poor regions and foreign DNA. Two plastid genes, tyrC in F. japonica and He. akashiwo and serC in F. japonica, appear to have arisen via lateral gene transfer (LGT) from diatoms, and several raphidophyte open reading frames are demonstrably homologous to sequences in diatom plasmids and plastid genomes. A group II intron in the F. japonica psbB gene also appears to be derived by LGT. Our results provide important insights into the evolutionary history of raphidophyte plastid genomes via LGT from the plastids and plasmid DNAs of diatoms.

13.
STAR Protoc ; 3(1): 101175, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35243369

ABSTRACT

Various bioinformatics protocols have been developed for trimming the number of operational taxonomic units (OTUs) in phylogenetic datasets, but they typically require significant manual intervention. Here we present TreeTuner, a semiautomated pipeline that allows both coarse and fine-scale tuning of large protein sequence phylogenetic datasets via the minimization of OTU redundancy. TreeTuner facilitates preliminary investigation of such datasets as well as more rigorous downstream analysis of specific subsets of OTUs. For complete details on the use and execution of this protocol, please refer to Maruyama et al. (2013) and Sibbald et al. (2019).


Subject(s)
Computational Biology , Computational Biology/methods , Phylogeny
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042801

ABSTRACT

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Subject(s)
Base Sequence/genetics , Eukaryota/genetics , Genomics/ethics , Animals , Biodiversity , Biological Evolution , Ecology , Ecosystem , Genome , Genomics/methods , Humans , Phylogeny
16.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042802

ABSTRACT

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Subject(s)
Base Sequence/genetics , Eukaryota/genetics , Genomics/standards , Animals , Biodiversity , Genomics/methods , Humans , Reference Standards , Reference Values , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
17.
Protoplasma ; 259(5): 1157-1174, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34939169

ABSTRACT

The streptophyte algal class Zygnematophyceae is the closest algal sister lineage to land plants. In nature, Zygnematophyceae can grow in both terrestrial and freshwater habitats and how they do this is an important unanswered question. Here, we studied what happens to the zygnematophyceaen alga Mougeotia sp., which usually occurs in permanent and temporary freshwater bodies, when it is shifted to liquid growth conditions after growth on a solid substrate. Using global differential gene expression profiling, we identified changes in the core metabolism of the organism interlinked with photosynthesis; the latter went hand in hand with measurable impact on the photophysiology as assessed via pulse amplitude modulation (PAM) fluorometry. Our data reveal a pronounced change in the overall physiology of the alga after submergence and pinpoint candidate genes that play a role. These results provide insight into the importance of photophysiological readjustment when filamentous Zygnematophyceae transition between terrestrial and aquatic habitats.


Subject(s)
Mougeotia , Streptophyta , Gene Expression , Mougeotia/genetics , Photosynthesis/genetics , Phylogeny , Plants/metabolism , Streptophyta/physiology
19.
Nat Commun ; 12(1): 6003, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650064

ABSTRACT

Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.


Subject(s)
Biological Evolution , Eukaryota/genetics , Genome , Genomics , Animals , DNA/metabolism , Eukaryotic Cells/metabolism , Microbiology , Parasites/genetics , Proteins/genetics , Proteins/metabolism
20.
BMC Plant Biol ; 21(1): 375, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34388962

ABSTRACT

BACKGROUND: The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with uniquely formed perforations through the use of a developmentally regulated process called programmed cell death (PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-perforation, window, perforation formation, perforation expansion and mature. The first three emerging "imperforate leaves" do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. PCD is active in cells called "PCD cells" that do not retain the antioxidant anthocyanin in spaces called areoles framed by the leaf veins of window stage leaves. Cells near the veins called "NPCD cells" retain a red pigmentation from anthocyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expression patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of leaf development, and between NPCD and PCD cells isolated by laser capture microdissection. RESULTS: Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperforate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signalling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes. CONCLUSIONS: RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation will be useful for future experiments on lace plant leaf development and PCD in planta.


Subject(s)
Alismatales/genetics , Alismatales/physiology , Apoptosis , Plant Leaves/physiology , Alismatales/growth & development , Anthocyanins/biosynthesis , Apoptosis/genetics , Cell Wall/enzymology , Gene Expression Regulation, Plant , Plant Cells , Plant Growth Regulators/physiology , Plant Leaves/genetics , Plant Proteins/metabolism , RNA, Plant , RNA-Seq , Transcription Factors/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...