Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 253: 104126, 2023 02.
Article in English | MEDLINE | ID: mdl-36731292

ABSTRACT

Nanoremediation is a new groundwater remediation technology in which nanoparticles (NPs) are injected into the sub-surface to promote in-situ degradation of aquifer contaminants. Although nanoremediation is an effective process to eliminate contaminants in-situ, its success relies on sufficiently mobile NPs that can reach the contaminated zones and remain there to facilitate chemical degradation of contaminants. Therefore, understanding the main parameters that control the mobility and retention of NPs in saturated porous media is a key component of designing a successful nanoremediation process. This work presents the outcome of a pore-scale study of nZVI NP (zero-valent iron) transport in sandy porous media using the non-destructive 3D imaging technique, X-ray computed micro-tomography (X-ray micro-CT). We investigate the effect of grain size (fine, coarse, carbonate and mixed sand) and composition (carbonate vs sand grains) on the mobility and retention of NPs in sand columns. To achieve this, we used four columns packed with grains of different sizes and compositions. The main contribution of this work is, therefore, to understand the effect of NP injection on the structural and geometric properties of sandy porous media and to identify the main pore-scale mechanisms controlling NP transport and entrapment. Our experiment shows that the pore geometries change because of NP injection. Pore clogging is evidenced through pore size and throat size distribution displaying a shift to the left with a noticeable reduction in pore connectivity in all the columns. The porosity and permeability of the columns studied display significant reduction as result of the NP injection.


Subject(s)
Metal Nanoparticles , Nanoparticles , Sand , Porosity , Nanoparticles/chemistry , Iron/chemistry , Carbonates , Metal Nanoparticles/chemistry
2.
Proc Natl Acad Sci U S A ; 117(24): 13366-13373, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32487728

ABSTRACT

Nanoscale zero-valent iron (nZVI) particles have excellent capacity for in situ remediation of groundwater resources contaminated by a range of organic and inorganic contaminants. Chlorinated solvents are by far the most treated compounds. Studies at column, pilot, and field scales have reported successful decrease in contaminant concentration upon injection of nZVI suspensions in the contaminated zones. However, the field application is far from optimized, particularly for treatments at-or close to-the source, in the presence of residual nonaqueous liquid (NAPL). The knowledge gaps surrounding the processes that occur within the pores of the sediments hosting those contaminants at microscale limit our ability to design nanoremediation processes that are optimized at larger scales. This contribution provides a pore-scale picture of the nanoremediation process. Our results reveal how the distribution of the trapped contaminant evolves as a result of contaminant degradation and generation of gaseous products. We have used state-of-the-art four-dimensional (4D) imaging (time-resolved three-dimensional [3D]) experiments to understand the details of this degradation reaction at the micrometer scale. This contribution shows that the gas released (from the reduction reaction) remobilizes the trapped contaminant by overcoming the capillary forces. Our results show that the secondary sources of NAPL contaminations can be effectively treated by nZVI, not only by in situ degradation, but also through pore-scale remobilization (induced by the evolved gas phase). The produced gas reduces the water relative permeability to less than 1% and, therefore, significantly limits the extent of plume migration in the short term.

3.
Sci Data ; 6: 190004, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30694226

ABSTRACT

This study reveals the pore-scale details of oil mobilisation and recovery from a carbonate rock upon injection of aqueous nanoparticle (NP) suspensions. X-ray computed micro-tomography (µCT), which is a non-destructive imaging technique, was used to acquire a dataset which includes: (i) 3D images of the sample collected at the end of fluid injection steps, and (ii) 2D radiogram series collected during fluid injections. The latter allows monitoring fluid flow dynamics at time resolutions down to a few seconds using a laboratory-based µCT scanner. By making this dataset publicly available we enable (i) new image reconstruction algorithms to be tested on large images, (ii) further development of image segmentation algorithms based on machine learning, and (iii) new models for multi-phase fluid displacements in porous media to be evaluated using images of a dynamic process in a naturally occurring and complex material. This dataset is comprehensive in that it offers a series of images that were captured before/during/and after the immiscible fluid injections.

4.
Sci Rep ; 8(1): 12074, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104676

ABSTRACT

The assessment of neuronal number, spatial organization and connectivity is fundamental for a complete understanding of brain function. However, the evaluation of the three-dimensional (3D) brain cytoarchitecture at cellular resolution persists as a great challenge in the field of neuroscience. In this context, X-ray microtomography has shown to be a valuable non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens, arisen as a new method for deciphering the cytoarchitecture and connectivity of the brain. In this work we present a method for imaging whole neurons in the brain, combining synchrotron-based X-ray microtomography with the Golgi-Cox mercury-based impregnation protocol. In contrast to optical 3D techniques, the approach shown here does neither require tissue slicing or clearing, and allows the investigation of several cells within a 3D region of the brain.


Subject(s)
Brain/cytology , Imaging, Three-Dimensional/methods , Neurons , X-Ray Microtomography/methods , Animals , Brain/diagnostic imaging , Imaging, Three-Dimensional/instrumentation , Mercuric Chloride/chemistry , Mice , Silver Staining/methods , Synchrotrons , Tissue Fixation/methods , X-Ray Microtomography/instrumentation
5.
Sci Rep ; 8(1): 11148, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042520

ABSTRACT

This work provides new insights into the dynamics of silica nanoparticle-based removal of organic fluids (here oil) from naturally occurring porous media. We have used 4D (time-resolved 3D) imaging at pore-scale using X-ray computed micro-tomography (µCT) technique. The captured 3D tomographic time-series data reveal the dynamics of immiscible oil displacement from a carbonate rock upon injection of nanoparticle (NP) suspensions (0.06 and 0.12 wt% SiO2 in deionised water). Our analysis shows significant pore-scale remobilisation of initially trapped oil upon injection of the NP suspensions, specifically, at higher concentration. Our data shows that oil clusters become significantly smaller with larger fluid/fluid interface as a result of the higher concentration NP injection. This paper demonstrates that use of 2D radiograms collected during fluid injections allows monitoring flow dynamics at time resolutions down to a few seconds using conventional laboratory-based µCT scanners. Here, as an underlying mechanism for oil remobilisation, we present the first 4D evidence of in-situ formation of an oil in water emulsion induced by nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...