Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J C Part Fields ; 77(10): 692, 2017.
Article in English | MEDLINE | ID: mdl-31997925

ABSTRACT

IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν µ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9 σ in four adjacent bins for neutrino energies E ν ≥ 177.8 TeV . The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.

2.
Phys Rev Lett ; 117(24): 241101, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-28009216

ABSTRACT

We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9} GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5} GeV to above 10^{11} GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6} GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5} GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

3.
Phys Rev Lett ; 117(7): 071801, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563950

ABSTRACT

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous ν_{µ} or ν[over ¯]_{µ} disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin^{2}2θ_{24}≤0.02 at Δm^{2}∼0.3 eV^{2} at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |U_{e4}|^{2}.

4.
Phys Rev Lett ; 115(8): 081102, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26340177

ABSTRACT

Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set consisting primarily of ν(e) and ν(τ) charged-current and neutral-current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky is extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7σ significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Φ(E(ν))=9.9(-3.4)(+3.9)×10(-19) GeV(-1) cm(-2) sr(-1) s(-1)(E(ν)/100 TeV(-2), consistent with IceCube's Southern-Hemisphere-dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index is performed. We find a spectral index of 2.2(-0.2)(+0.2), which is also in good agreement with the Southern Hemisphere result.

SELECTION OF CITATIONS
SEARCH DETAIL
...