Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 15254, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956185

ABSTRACT

Maritime objects frequently exhibit low-quality and insufficient feature information, particularly in complex maritime environments characterized by challenges such as small objects, waves, and reflections. This situation poses significant challenges to the development of reliable object detection including the strategies of loss function and the feature understanding capabilities in common YOLOv8 (You Only Look Once) detectors. Furthermore, the widespread adoption and unmanned operation of intelligent ships have generated increasing demands on the computational efficiency and cost of object detection hardware, necessitating the development of more lightweight network architectures. This study proposes the EL-YOLO (Efficient Lightweight You Only Look Once) algorithm based on YOLOv8, designed specifically for intelligent ship object detection. EL-YOLO incorporates novel features, including adequate wise IoU (AWIoU) for improved bounding box regression, shortcut multi-fuse neck (SMFN) for a comprehensive analysis of features, and greedy-driven filter pruning (GDFP) to achieve a streamlined and lightweight network design. The findings of this study demonstrate notable advancements in both detection accuracy and lightweight characteristics across diverse maritime scenarios. EL-YOLO exhibits superior performance in intelligent ship object detection using RGB cameras, showcasing a significant improvement compared to standard YOLOv8 models.

3.
Skin Res Technol ; 29(11): e13505, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38009020

ABSTRACT

BACKGROUND: Pigmented skin lesions (PSLs) pose medical and esthetic challenges for those affected. PSLs can cause skin cancers, particularly melanoma, which can be life-threatening. Detecting and treating melanoma early can reduce mortality rates. Dermoscopic imaging offers a noninvasive and cost-effective technique for examining PSLs. However, the lack of standardized colors, image capture settings, and artifacts makes accurate analysis challenging. Computer-aided diagnosis (CAD) using deep learning models, such as convolutional neural networks (CNNs), has shown promise by automatically extracting features from medical images. Nevertheless, enhancing the CNN models' performance remains challenging, notably concerning sensitivity. MATERIALS AND METHODS: In this study, we aim to enhance the classification performance of selected pretrained CNNs. We use the 2019 ISIC dataset, which presents eight disease classes. To achieve this goal, two methods are applied: resolution of the dataset imbalance challenge through augmentation and optimization of the training hyperparameters via Bayesian tuning. RESULTS: The performance improvement was observed for all tested pretrained CNNs. The Inception-V3 model achieved the best performance compared to similar results, with an accuracy of 96.40% and an AUC of 0.98. CONCLUSION: According to the study, classification performance was significantly enhanced by augmentation and Bayesian hyperparameter tuning.


Subject(s)
Melanoma , Pigmentation Disorders , Skin Neoplasms , Humans , Bayes Theorem , Skin Neoplasms/pathology , Melanoma/pathology , Diagnosis, Computer-Assisted/methods , Neural Networks, Computer
4.
J Imaging ; 9(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623697

ABSTRACT

A content-based image retrieval system, as an Indonesian traditional woven fabric knowledge base, can be useful for artisans and trade promotions. However, creating an effective and efficient retrieval system is difficult due to the lack of an Indonesian traditional woven fabric dataset, and unique characteristics are not considered simultaneously. One type of traditional Indonesian fabric is ikat woven fabric. Thus, this study collected images of this traditional Indonesian woven fabric to create the TenunIkatNet dataset. The dataset consists of 120 classes and 4800 images. The images were captured perpendicularly, and the ikat woven fabrics were placed on different backgrounds, hung, and worn on the body, according to the utilization patterns. The feature extraction method using a modified convolutional neural network (MCNN) learns the unique features of Indonesian traditional woven fabrics. The experimental results show that the modified CNN model outperforms other pretrained CNN models (i.e., ResNet101, VGG16, DenseNet201, InceptionV3, MobileNetV2, Xception, and InceptionResNetV2) in top-5, top-10, top-20, and top-50 accuracies with scores of 99.96%, 99.88%, 99.50%, and 97.60%, respectively.

5.
BMJ Open ; 13(8): e071324, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553193

ABSTRACT

INTRODUCTION: The dentomaxillofacial (DMF) area, which includes the teeth, maxilla, mandible, zygomaticum, orbits and midface, plays a crucial role in the maintenance of the physiological functions despite its susceptibility to fractures, which are mostly caused by mechanical trauma. As a diagnostic tool, radiographic imaging helps clinicians establish a diagnosis and determine a treatment plan; however, the presence of human factors in image interpretation can result in missed detection of fractures. Therefore, an artificial intelligence (AI) computing system with the potential to help detect abnormalities on radiographic images is currently being developed. This scoping review summarises the literature and assesses the current status of AI in DMF fracture detection in diagnostic imaging. METHODS AND ANALYSIS: This proposed scoping review will be conducted using the framework of Arksey and O'Malley, with each step incorporating the recommendations of Levac et al. By using relevant keywords based on the research questions. PubMed, Science Direct, Scopus, Cochrane Library, Springerlink, Institute of Electrical and Electronics Engineers, and ProQuest will be the databases used in this study. The included studies are published in English between 1 January 2000 and 30 June 2023. Two independent reviewers will screen titles and abstracts, followed by full-text screening and data extraction, which will comprise three components: research study characteristics, comparator and AI characteristics. ETHICS AND DISSEMINATION: This study does not require ethical approval because it analyses primary research articles. The research findings will be distributed through international conferences and peer-reviewed publications.


Subject(s)
Artificial Intelligence , Fractures, Bone , Humans , Peer Review , Research Design , Review Literature as Topic
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1760-1763, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060228

ABSTRACT

Diabetic Retinopathy (DR) is a disease which affect the vision ability. The observation by an ophthalmologist usually conducted by analyzing the retinal images of the patient which are marked by some DR features. However some misdiagnosis are usually found due to human error. Here, a deep learning-based low-cost embedded system is established to assist the doctor for grading the severity of the DR from the retinal images. A compact deep learning algorithm named Deep-DR-Net which fits on a small embedded board is afterwards proposed for such purposes. In the heart of Deep-DR-Net, a cascaded encoder-classifier network is arranged using residual style for ensuring the small model size. The usage of different types of convolutional layers subsequently guarantees the features richness of the network for differentiating the grade of the DR. Experimental results show the capability of the proposed system for detecting the existence as well as grading the severity of the DR symptomps.


Subject(s)
Diabetic Retinopathy , Algorithms , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL