Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell ; 84(16): 3026-3043.e11, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39178838

ABSTRACT

Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.


Subject(s)
BRCA2 Protein , DNA Damage , DNA Repair , DNA Replication , DNA, Single-Stranded , Rad51 Recombinase , Xenopus laevis , Humans , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Animals , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Cryoelectron Microscopy , DNA Polymerase theta , DNA Methylation , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
2.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833875

ABSTRACT

Cyclin-dependent kinase 4/6 inhibitors (CDK4/6iss) are widely used in first-line metastatic breast cancer. For patients with progression under CDK4/6is, there is currently no standard treatment recommended at the category 1 level in international guidelines. The purpose of this article is to review the cellular mechanisms underlying the resistance to CDK4/6is, as well as treatment strategies and the clinical data about the efficacy of subsequent treatments after CDK4/6is-based therapy. In the first part, this review mainly discusses cell-cycle-specific and cell-cycle-non-specific resistance to CDK4/6is, with a focus on early and late progression. In the second part, this review analyzes potential therapeutic approaches and the available clinical data on them: switching to other CDK4/6is, to another single hormonal therapy, to other target therapies (PI3K, mTOR and AKT) and to chemotherapy.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 6 , Humans , Female , Cyclin-Dependent Kinase 4 , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511212

ABSTRACT

The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients' prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients' prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients' overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C's increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Female , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cystadenocarcinoma, Serous/diagnosis , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , DNA Copy Number Variations/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL