Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 12(3): e2201968, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36300643

ABSTRACT

Graphene-based 2D nanomaterials possess unique physicochemical characteristics which can be utilized in various biomedical applications, including the transport and presentation of chemotherapeutic agents. In glioblastoma multiforme (GBM), intratumorally administered thin graphene oxide (GO) nanosheets demonstrate a widespread distribution throughout the tumor volume without impact on tumor growth, nor spread into normal brain tissue. Such intratumoral localization and distribution can offer multiple opportunities for treatment and modulation of the GBM microenvironment. Here, the kinetics of GO nanosheet distribution in orthotopic GBM mouse models is described and a novel nano-chemotherapeutic approach utilizing thin GO sheets as platforms to non-covalently complex a proteasome inhibitor, bortezomib (BTZ), is rationally designed. Through the characterization of the GO:BTZ complexes, a high loading capacity of the small molecule on the GO surface with sustained BTZ biological activity in vitro is demonstrated. In vivo, a single low-volume intratumoral administration of GO:BTZ complex shows an enhanced cytotoxic effect compared to free drug in two orthotopic GBM mouse models. This study provides evidence of the potential that thin and small GO sheets hold as flat nanoscale platforms for GBM treatment by increasing the bioavailable drug concentration locally, leading to an enhanced therapeutic effect.


Subject(s)
Antineoplastic Agents , Glioblastoma , Graphite , Animals , Mice , Bortezomib/therapeutic use , Glioblastoma/pathology , Graphite/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Tumor Microenvironment
2.
Chemistry ; 28(22): e202200254, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35254708

ABSTRACT

Graphene doped with heteroatoms such as nitrogen, boron, and phosphorous by replacing some of the skeletal carbon atoms is emerging as an important class of two-dimensional materials as it offers the much-needed bandgap for optoelectronic applications and provides better access for chemical functionalization at the heteroatom sites. Covalent grafting of photosensitizers onto such doped graphenes makes them extremely useful for light-induced applications. Herein, we report the covalent functionalization of N-doped graphene (NG) with two well-known electron donor photosensitizers, namely, zinc porphyrin (ZnP) and zinc phthalocyanine (ZnPc), using the simple click chemistry approach. Covalent attachment of ZnP and ZnPc at the N-sites of NG in NG-ZnP and NG-ZnPc hybrids was confirmed by using a range of spectroscopic, thermogravimetric and imaging techniques. Ground- and excited-state interactions in NG-ZnP and NG-ZnPc were monitored by using spectral and electrochemical techniques. Efficient quenching of photosensitizer fluorescence in these hybrids was observed, and the relatively easier oxidations of ZnP and ZnPc supported excited-state charge-separation events. Photoinduced charge separation in NG-ZnP and NG-ZnPc hybrids was confirmed by using the ultrafast pump-probe technique. The measured rate constants were of the order of 1010  s,-1 thus indicating ultrafast electron transfer phenomena.

3.
Small ; 17(25): e2101483, 2021 06.
Article in English | MEDLINE | ID: mdl-33988903

ABSTRACT

Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID-19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS-CoV-2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS-CoV-2 viral spike (open state - 6VYB or closed state - 6VXX), ACE2 (1R42), and the ACE2-bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological-grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS-CoV-2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID-19.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Graphite , Humans , Membrane Proteins , Molecular Docking Simulation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
4.
Nanoscale ; 12(17): 9890-9898, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32347282

ABSTRACT

The ability of a triplet photosensitizer to generate long-lived charge separated states, in contrast to traditionally used singlet photosensitizers, in covalently functionalized single-walled carbon nanotube hybrids has been investigated. Enriched single-walled carbon nanotubes with two diameters, namely (6,5) and (7,6), were covalently modified to carry a charge-stabilizing triplet photosensitizer derived from a palladium porphyrin. The nanohybrids were fully characterized and the presence of intramolecular interactions between the porphyrin and nanotubes was established from various spectroscopic, imaging, electrochemical and thermochemical studies. Photoluminescence of palladium porphyrin was found to be quantitatively quenched in the presence of covalently appended SWCNTs and this quenching is due to excited state charge separation and has been established by femtosecond transient absorption studies. Owing to the presence of the triplet photosensitizer, the charge separated states lasted over 3 ns, i.e., much longer than those reported earlier for singlet photosensitizer-derived nanotube hybrids. The nanohybrids also exhibited efficient photocatalytic behavior in experiments involving electron pooling of one-electron reduced methyl viologen in the presence of a sacrificial electron donor. Higher yields of photoproducts were achieved from the present donor-acceptor nanohybrids when compared with those of singlet photosensitizer-derived nanohybrids, more so for (6,5) nanotube derived hybrids compared to (7,6) nanotube derived hybrids. The present findings highlight the importance of triplet photosensitizer derived nanohybrids in artificial photosynthesis of charge separation and photocatalytic applicatons.

5.
Nanoscale ; 11(32): 14978-14992, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31372604

ABSTRACT

In recent years there has been a growing interest in finding materials revealing bidirectional charge-transfer characteristics, that is, materials behaving as an electron donor or an acceptor in the presence of redox and photoactive addends, for optoelectronic applications. In this respect, carbon-based nanostructures, such as graphene and carbon nanotubes, have emerged as promising nanomaterials for the development of hybrid systems for bidirectional charge transfer, whose behaviour can be switched from donor-type to acceptor-type by simply changing the electroactive counterpart to which they are anchored. In this review we provide an overview of the main advances that have been made over the past few years in carbon-based hybrid architectures involving different types of carbon nanostructures and photosensitizers. In particular, carbon nanotube and graphene-based hybrid systems will be highlighted.

6.
Chem Commun (Camb) ; 55(67): 9999-10002, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31372622

ABSTRACT

Covalent B-functionalization of B-doped graphene has been performed for the first time. The electronic properties and Hall effect of functionalized N- and B-doped graphene can be tuned by tailoring the electron-donating/-withdrawing properties of the organic addend.

7.
Nanoscale Adv ; 1(10): 4009-4015, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-36132123

ABSTRACT

Hetero-atom doped graphene is a two-dimensional material with a band gap, needed to build optoelectronic devices. However, research progress in this area has been sluggish due to synthetic challenges to build energy harvesting materials, especially donor-acceptor type hybrids. In the present study, using click chemistry, we have successfully synthesized a donor-acceptor hybrid comprised of N-doped graphene and perylenediimide (PDI), a well-known electron-accepting photosensitizer. The TGA and XPS results revealed the attachment of the PDI moiety in the hybrid. Ground and excited state interactions were monitored by a variety of spectral and electrochemical techniques. Finally, the ability of the present donor-acceptor hybrid to undergo photoinduced charge separation from singlet excited PDI was systematically probed using femtosecond transient spectral techniques. Evidence of charge separation was possible to achieve from comparison of transient and spectroelectrochemical results. These results suggest the potential use of covalently functionalized, substitutional N-doped graphene as a functional material for building optoelectronic devices.

8.
Chem Sci ; 9(43): 8221-8227, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30542570

ABSTRACT

N-Doped graphene (N-G) was chemically functionalized by N-alkylation with the well-known electron acceptor C60. The degree of functionalization and the key structural features of the N-G/C60 hybrid were systematically investigated by a number of techniques including thermogravimetric analysis, X-ray photoelectron and Raman spectroscopies and transmission electron and atomic force microscopies. Absorption and electrochemical studies revealed interactions between the N-G and C60 while the fluorescence of C60 within the hybrid was found to be fully quenched. Evidence for the occurrence of excited state charge transfer from the singlet excited C60 to N-G in the hybrid was obtained from femtosecond transient absorption studies covering the visible-near-IR regions. Electron-pooling experiments performed in the presence of a sacrificial electron donor and a second electron acceptor, methyl viologen, revealed the accumulation of the one-electron reduced product of methyl viologen upon continuous irradiation of the N-G/C60 nanohybrid, thus revealing the utility of this material in photocatalytic energy harvesting applications.

9.
Nanoscale ; 10(31): 15078-15089, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30059118

ABSTRACT

Chemical functionalization of nanotubes, in which their properties can be combined with those of other classes of materials, is fundamental to improve the physicochemical properties of nanotubes for potential technological applications. In this work, we theoretically and experimentally examine the Pauson-Khand reaction (PKR) on zig-zag, armchair, and chiral single-walled carbon nanotubes (SWCNTs). Our benchmarked density functional theory (DFT) calculations show that an alternative pathway to the widely accepted Magnus reaction pathway has significantly lower energy barriers, thus suggesting the use of this alternative pathway to predict whether a PKR on SWCNTs is favored or hampered. Accessible energy barriers of up to 16 kcal mol-1 are estimated and our results suggest that semiconducting SWCNTs react faster than metallic ones, although both types can be functionalized. Guided by our theoretical predictions, cyclopentenones are successfully attached to SWCNTs by heating and are, subsequently, characterized in the laboratory.

10.
Nanoscale ; 10(11): 5205-5213, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29493701

ABSTRACT

Enriched semiconducting single-walled carbon nanotubes (SWCNT (6,5) and SWCNT (7,6)) and HiPco nanotubes were covalently functionalized with either zinc phthalocyanine or silicon phthalocyanine as electron donors. The synthetic strategy resulted in edge-on and face-on geometries with respect to the phthalocyanine geometry, with both phthalocyanines held by an electronically conducting diphenylacetylene linker. The extent of functionalization in the MPc-SWCNT (M = Zn or Si) donor-acceptor nanohybrids was determined by systematic studies involving AFM, TGA, XPS, optical and Raman techniques. Intramolecular interactions in MPc-SWCNT nanohybrids were probed by studies involving optical absorbance, Raman, luminescence and electrochemical studies. Different degrees of interactions were observed depending on the type of MPc and mode of attachment. Substantial quenching of MPc fluorescence in these hybrids was observed from steady-state and three-dimensional fluorescence mapping, which suggests the occurrence of excited state events. Evidence for the occurrence of excited state charge transfer type interactions was subsequently secured from femtosecond transient absorption studies covering both the visible and near-infrared regions. Furthermore, electron-pooling experiments performed in the presence of a sacrificial electron donor and a second electron acceptor revealed accumulation of one-electron reduced product upon continuous irradiation of the nanohybrids. In such experiments, the ZnPc-SWCNT (6,5) nanohybrid outperformed other nanohybrids and this suggests that this is a superior donor-acceptor system for photocatalytic applications.

11.
Biosens Bioelectron ; 98: 240-247, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28688310

ABSTRACT

Viologen-SWCNT hybrids are synthesized by aryl-diazonium chemistry in the presence of isoamyl nitrite followed by condensation reaction of the resulting HOOC-Phe-SWCNT with 1-(3-aminoethyl)-4,4'-bipyridinium bromine and N-alkylation with 2-bromoethylamine. The V-Phe-SWCNT hybrids were characterized by using different spectroscopic techniques (FT-IR, Raman, UV-vis), TGA and Kaiser test. Viologen-SWCNTs were used for the preparation of an electrochemical immunosensor for the determination of the transforming growth factor ß1 (TGF-ß1) cytokine considered as a reliable biomarker in several human diseases. The methodology involved preparation of V-Phe-SWCNT(-HRP)-anti-TGF conjugates by covalent linkage of HRP and anti-TGF onto V-Phe-SWCNT hybrids. Biotinylated anti-TGF antibodies were immobilized onto 4-carboxyphenyl-functionalized SPCEs modified with streptavidin and a sandwich type immunoassay was implemented for TGF-ß1 with signal amplification using V-Phe-SWCNT(-HRP)-anti-TGF conjugates as carrier tags. The analytical characteristics exhibited by the as prepared immunosensor (range of linearity between 2.5 and 1000pgmL-1 TGF-ß1; detection limit of 0.95pgmL-1) improve notably those reported with other previous immunosensors or ELISA kits. A great selectivity against other proteins was also found. The prepared immunosensor was validated by determining TGF-ß1 in real saliva samples. Minimal sample treatment was required and the obtained results were in excellent agreement with those obtained by using a commercial ELISA kit.


Subject(s)
Biosensing Techniques , Immunoassay , Transforming Growth Factor beta1/isolation & purification , Electrochemical Techniques , Humans , Nanotubes, Carbon/chemistry , Transforming Growth Factor beta1/chemistry , Transforming Growth Factor beta1/genetics
12.
Nanoscale ; 9(22): 7551-7558, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28534917

ABSTRACT

Functionalization of single-walled (SWCNTs) and double-walled carbon nanotubes (DWCNTs) with a charge stabilizing zinc porphyrin functionalized with triphenylamine entities has been accomplished. The synthetic approach involved the reaction of tris-(triphenylamine)porphyrinato zinc(ii) with iodobenzene functionalized nanotubes through a Sonogashira C-C cross coupling reaction under microwave irradiation conditions. Evidence of covalent functionalization and the extent of functionalization was obtained from systematic studies carried out by AFM, TGA, XPS and Raman spectroscopy techniques. The porphyrin-nanotube interactions in the SWCNT-porphyrin hybrid were probed by studies involving optical absorbance, Raman spectroscopy, steady-state and time resolved emission and electrochemical studies. The fluorescence of porphyrin in this hybrid was found to be quenched due to interactions with the CNTs. Femtosecond transient absorption spectral studies covering both the visible and near-infrared regions were supportive of excited state charge transfer interactions in the zinc porphyrin-SWCNT. The charge separated state was persistent for about 1 ns. Electron pooling experiments suggested that this donor-acceptor nanohybrid could be a useful photocatalyst.

13.
Biosens Bioelectron ; 74: 24-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26093125

ABSTRACT

An electrochemical immunosensor for adiponectin (APN) using screen printed carbon electrodes (SPCEs) modified with functionalized double-walled carbon nanotubes (DWCNTs) as platforms for immobilization of the specific antibodies is reported. DWCNTs were functionalized by treatment with 4-aminobenzoic acid (HOOC-Phe) in the presence of isoamylnitrite resulting in the formation of 4-carboxyphenyl-DWCNTs. The oriented binding of specific antibodies toward adiponectin was accomplished by using the metallic-complex chelating polymer Mix&Go™. The HOOC-Phe-DWCNTs-modified SPCEs were characterized by cyclic voltammetry and compared with HOOC-Phe-SWCNTs/SPCE. The different variables affecting the performance of the developed immunosensor were optimized. Under the selected conditions, a calibration plot for APN was constructed showing a range of linearity extending between 0.05 and 10.0 µg/mL which is adequate for the determination of the cytokine in real samples. A detection limit of 14.5 ng/mL was achieved. The so prepared immunosensor exhibited a good reproducibility for the APN measurements, excellent storage stability and selectivity, and a much shorter assay time than the available ELISA kits. The usefulness of the immunosensor for the analysis of real samples was demonstrated by analyzing human serum from female or male healthy patients.


Subject(s)
Adiponectin/blood , Antibodies, Immobilized/chemistry , Biosensing Techniques/instrumentation , Chelating Agents/chemistry , Electrochemical Techniques/instrumentation , Nanotubes, Carbon/chemistry , 4-Aminobenzoic Acid/chemistry , Adiponectin/analysis , Enzyme-Linked Immunosorbent Assay , Equipment Design , Female , Humans , Immunoassay/instrumentation , Limit of Detection , Male , Nanotubes, Carbon/ultrastructure , Polymers/chemistry , Reproducibility of Results
14.
Org Lett ; 13(19): 5362-5, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21913659

ABSTRACT

Two new push-pull chromophores based on triphenylamine as donor and 2-carboxymethyl-2-cyanomethylenethiazole as acceptor have been synthesized. Both exhibit strong light absorption covering from 300 to 800 nm. Electrochemical studies show HOMO-LUMO gaps of 2.01 and 1.54 eV, making, together with the panchromatic absorption, these systems promising materials in the field of molecular photovoltaic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...