Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Rheumatol ; 75(3): 468-474, 2023 03.
Article in English | MEDLINE | ID: mdl-36122175

ABSTRACT

OBJECTIVE: To identify the molecular basis of a severe systemic autoinflammatory disorder (SAID) and define its main phenotypic features, and to functionally assess the sequence variations identified in LYN, a gene encoding a nonreceptor tyrosine kinase. METHODS: We used targeted next-generation sequencing and in vitro functional studies of Lyn phosphorylation state and Lyn-dependent NF-κB activity after expression of recombinant Lyn isoforms carrying different sequence variations. RESULTS: We identified a de novo LYN variation (p.Tyr508His) in a patient presenting since birth with recurrent fever, chronic urticaria, atopic dermatitis, arthralgia, increased inflammatory biomarkers, and elevated plasma cytokine levels. We studied the consequences on Lyn phosphorylation state of the p.Tyr508His variation and of the 2 LYN variations reported so far (p.Tyr508Phe and p.Tyr508*), and found that all 3 variations prevent phosphorylation of residue 508 and lead to autophosphorylation of Tyr397. Additionally, these 3 LYN variations activate the NF-κB pathway. These results show a gain-of-function effect of the variations involving Tyr508 on Lyn activity. CONCLUSION: This study demonstrates the pathogenicity of the first 3 LYN variations identified in SAID patients and delineates the phenotypic spectrum of a disease entity characterized by severe, early-onset, systemic inflammatory disease affecting neonates with no family history of SAID. All 3 LYN variations affect the same tyrosine residue located in the C-terminus of Lyn, thereby demonstrating the critical role of this residue in the proper regulation of Lyn activity in humans.


Subject(s)
NF-kappa B , src-Family Kinases , Infant, Newborn , Humans , src-Family Kinases/genetics , src-Family Kinases/metabolism , NF-kappa B/metabolism , Gain of Function Mutation , Phosphorylation , Protein-Tyrosine Kinases
2.
J Allergy Clin Immunol ; 150(6): 1545-1555, 2022 12.
Article in English | MEDLINE | ID: mdl-35780935

ABSTRACT

BACKGROUND: Urticarial lesions are observed in both cutaneous and systemic disorders. Familial forms of urticarial syndromes are rare and can be encountered in systemic autoinflammatory diseases. OBJECTIVE: We sought to investigate a large family with dominantly inherited chronic urticarial lesions associated with hypercytokinemia. METHODS: We performed a genetic linkage analysis in 14 patients from a 5-generation family, as well as whole-exome sequencing, cytokine profiling, and transcriptomic analyses on samples from 2 patients. The identified candidate protein was studied after in vitro expression of the corresponding normal and mutated recombinant proteins. An unsupervised proteomic approach was used to unveil the associated protein network. RESULTS: The disease phenotype of the most affected family members is characterized by chronic urticarial flares associated with extremely high plasma levels of proinflammatory (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-10 and IL-1 receptor antagonist [IL-1RA]) cytokines, with no secondary organ dysfunction, no susceptibility to infections, no fever, and normal C-reactive protein levels. Monocyte transcriptomic analyses identified an immunotolerant profile in the most affected patient. The affected family members carried a loss-of-function mutation in RNF213 that encodes mysterin, a protein with a poorly known physiologic role. We identified the deubiquitinase CYLD, a major regulator of inflammation, as an RNF213 partner and showed that CYLD expression is inhibited by wild-type but not mutant RNF213. CONCLUSION: We identified a new entity characterized by chronic urticarial lesions associated with a clinically blunted hypercytokinemia. This disease, which is due to loss of function of RNF213, reveals mysterin's key role in the complex molecular network of innate immunity.


Subject(s)
Cytokine Release Syndrome , Proteomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...