Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rofo ; 195(12): 1081-1096, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37479218

ABSTRACT

BACKGROUND: Differential diagnosis of non-compressive cervical myelopathy encompasses a broad spectrum of inflammatory, infectious, vascular, neoplastic, neurodegenerative, and metabolic etiologies. Although the speed of symptom onset and clinical course seem to be specific for certain neurological diseases, lesion pattern on MR imaging is a key player to confirm diagnostic considerations. METHODS: The differentiation between acute complete transverse myelitis and acute partial transverse myelitis makes it possible to distinguish between certain entities, with the latter often being the onset of multiple sclerosis. Typical medullary MRI lesion patterns include a) longitudinal extensive transverse myelitis, b) short-range ovoid and peripheral lesions, c) polio-like appearance with involvement of the anterior horns, and d) granulomatous nodular enhancement prototypes. RESULTS AND CONCLUSION: Cerebrospinal fluid analysis, blood culture tests, and autoimmune antibody testing are crucial for the correct interpretation of imaging findings. The combination of neuroradiological features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy. KEY POINTS: · The differentiation of medullary lesion patterns, i. e., longitudinal extensive transverse, short ovoid and peripheral, polio-like, and granulomatous nodular, facilitates the diagnosis of myelitis.. · Discrimination of acute complete and acute partial transverse myelitis makes it possible to categorize different entities, with the latter frequently being the overture of multiple sclerosis (MS).. · Neuromyelitis optica spectrum disorders (NMOSD) may start as short transverse myelitis and should not be mistaken for MS.. · The combination of imaging features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy.. · Additional brain imaging is mandatory in suspected demyelinating, systemic autoimmune, infectious, paraneoplastic, and metabolic diseases..


Subject(s)
Multiple Sclerosis , Myelitis, Transverse , Poliomyelitis , Animals , Humans , Myelitis, Transverse/diagnostic imaging , Myelitis, Transverse/pathology , Diagnosis, Differential , Multiple Sclerosis/diagnostic imaging , Magnetic Resonance Imaging/methods
2.
Eur J Cardiothorac Surg ; 55(3): 484-493, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30165639

ABSTRACT

OBJECTIVES: Frozen cryopreservation (FC) with the vapour phase of liquid nitrogen storage (-135°C) is a standard biobank technique to preserve allogeneic heart valves to enable a preferable allograft valve replacement in clinical settings. However, their long-term function is limited by immune responses, inflammation and structural degeneration. Ice-free cryopreserved (IFC) valves with warmer storage possibilities at -80°C showed better matrix preservation and decreased immunological response in preliminary short-term in vivo studies. Our study aimed to assess the prolonged performance of IFC allografts in an orthotopic pulmonary sheep model. METHODS: FC (n = 6) and IFC (n = 6) allografts were transplanted into juvenile Merino sheep. After 12 months of implantation, functionality testing via 2-dimensional echocardiography and histological analyses was performed. In addition, multiphoton autofluorescence imaging and Raman microspectroscopy analysis were applied to qualitatively and quantitatively assess the matrix integrity of the leaflets. RESULTS: Six animals from the FC group and 5 animals from the IFC group were included in the analysis. Histological explant analysis showed early inflammation in the FC valves, whereas sustainable, fully functional, devitalized acellular IFC grafts were obtained. IFC valves showed excellent haemodynamic data with fewer gradients, no pulmonary regurgitation, no calcification and acellularity. Structural remodelling of the leaflet matrix structure was only detected in FC-treated tissue, whereas IFC valves maintained matrix integrity comparable to that of native controls. The collagen crimp period and amplitude and elastin structure were significantly different in the FC valve cusps compared to IFC and native cusps. Collagen fibres in the FC valves were less aligned and straightened. CONCLUSIONS: IFC heart valves with good haemodynamic function, reduced immunogenicity and preserved matrix structures have the potential to overcome the known limitations of the clinically applied FC valve.


Subject(s)
Bioprosthesis , Cryopreservation/standards , Heart Valve Prosthesis , Allografts , Animals , Models, Animal , Sheep , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...