Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 5049, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25266869

ABSTRACT

Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance.

2.
Nanoscale ; 6(4): 2238-43, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24424255

ABSTRACT

We synthesize colloidal CdSe@CdS octapod nanocrystals decorated with Pt domains, resulting in a metal-semiconductor heterostructure. We devise a protocol to control the growth of Pt on the CdS surface, realizing both a selective tipping and a non-selective coverage. Ultrafast optical spectroscopy, particularly femtosecond transient absorption, is employed to correlate the dynamics of optical excitations with the nanocrystal morphology. We find two regimes for capture of photoexcited electrons by Pt domains: a slow capture after energy relaxation in the semiconductor, occurring in tipped nanocrystals and resulting in large spatial separation of charges, and an ultrafast capture of hot electrons occurring in nanocrystals covered in Pt, where charge separation happens faster than energy relaxation and Auger recombination. Besides the relevance for fundamental materials science and control at the nanoscale, our nanocrystals may be employed in solar photocatalysis.


Subject(s)
Cadmium Compounds/chemistry , Nanoparticles/chemistry , Platinum/chemistry , Selenium Compounds/chemistry , Semiconductors , Sulfides/chemistry
3.
ACS Nano ; 7(1): 229-38, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23194028

ABSTRACT

Intensity instabilities are a common trademark of the photoluminescence of nanoemitters. This general behavior is commonly attributed to random fluctuations of free charges and activation of charge traps reducing the emission yield intermittently. However, the actual physical origin of this phenomenon is actively debated. Here we devise an experiment, variable pulse rate photoluminescence, to control the accumulation of charges and the activation of charge traps. The dynamics of these states is studied, with pulse repetition frequencies from the single-pulse to the megahertz regime, by monitoring photoluminescence spectrograms with picosecond temporal resolution. We find that both photocharging and charge trapping contribute to photoluminescence quenching, and both processes can be reversibly induced by light. Our spectroscopic technique demonstrates that charge accumulation and trap formation are strongly sensitive to the environment, showing different dynamics when nanocrystals are dispersed in solution or deposited as a film.


Subject(s)
Colloids/chemistry , Luminescent Measurements/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Colloids/radiation effects , Crystallization/methods , Light , Materials Testing , Nanostructures/radiation effects , Particle Size , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...