Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(1999): 20230220, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37221847

ABSTRACT

Modern coral reefs and associated biodiversity are severely threatened by increasing terrestrial runoff. Similar scenarios could be suspected for geological times, but reef coral resilience is still an enigma. In late Visean-Serpukhovian (Mississippian foraminiferal zones/MFZ 14-16) times, a major glaciation phase of the late Palaeozoic Ice Age (LPIA) associated with enhanced terrestrial weathering and runoff coincides with a biodiversity crisis and coral reef decline. In this study, the impact of enhanced terrestrial runoff is tested on size variations of colonial corals Aulina rotiformis and Lithostrotion decipiens along a gradient of contemporaneous (Serpukhovian) open marine carbonate to near-shore siliciclastic facies in South China. Along this gradient, their sizes decrease from carbonate, through intermediate carbonate-siliciclastic, to siliciclastic facies. This is consistent with increasing abundance of terrestrial materials of high silicon, aluminium and phosphorus values. On a larger million-year-long interval (MFZ14-16) and for several palaeocontinents, size data of Lithostrotion decipiens and Siphonodendron pauciradiale show a distinct decline in late Visean, when enhanced terrestrial weathering occurred commonly with palaeosols developed during regression. This suggests that terrestrial sediment and nutrient input may have mainly controlled phenotypic plasticity in Mississippian reef corals, with a decrease in size as a component of resilience across the LPIA onset.


Subject(s)
Anthozoa , Animals , Facies , Coral Reefs , Adaptation, Physiological , Biodiversity
2.
Sci Rep ; 6: 39694, 2016 12 23.
Article in English | MEDLINE | ID: mdl-28009013

ABSTRACT

Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the 'Big Five' extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and 'Big Five' extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions.


Subject(s)
Archaea/chemistry , Bacteria/chemistry , Biological Evolution , Carbonates/chemistry , Extinction, Biological , Geography , Animals , Anthozoa , Biodiversity , China , Fossils , Phylogeny , Porifera
SELECTION OF CITATIONS
SEARCH DETAIL
...