Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 580: 50-68, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27960117

ABSTRACT

In detrital coastal aquifers, seawater and surface water may interact with groundwater in multiple ways. Understanding the interference of water fluxes in this type of environment is essential to effectively manage the groundwater resources in water-stressed regions, such as the Mediterranean coastal fringe. In this research, the characterization of the main hydrogeochemical processes and the interaction between surface water and groundwater in the Marbella-Estepona coastal aquifers (southern Spain) have been carried out by means of the combined use of different hydrogeochemical indicators along with isotope data. The results show that the diversity of source lithologies (peridotite, carbonate and/or metapelitic) substantially conditions the groundwater geochemistry. The analysis of ionic deltas made it possible a preliminary screening of the geochemical reactions that occur in the Marbella-Estepona aquifers, while the Discriminant Analysis allowed for a consistent classification of sampled groundwater types. The dissolution of calcite and dolomite determines the chemical composition of the groundwater from the eastern sector that are more conditioned by the rainwater infiltration. The dissolution of magnesium-bearing minerals (predominantly forming peridotite rocks) is observed in groundwater samples from the western and central sectors, whose chemical composition showed a greater influence of surface water. The spatial analysis of rCl-/Br- in groundwater has permitted to corroborate that saline intrusion is negligible, hardly affecting to its original water quality. The irregularly distributed recharge by precipitation (seasonal effect) and the atmospheric circulation of cloud fronts (coastal/continental effect) explains why most of groundwater sampled is isotopically impoverished with respect to the rainfall signature. The isotope approach also suggests the hydraulic relationship between surface water and groundwater in the study site. A deeper knowledge of spatial hydrogeochemical variations in coastal groundwater and the influence of water sources over them are crucial for a sustainable groundwater management and global change adaptation in equivalent Mediterranean water-stressed regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...