Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Inherit Metab Dis ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597022

ABSTRACT

ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.

2.
FASEB J ; 37(12): e23283, 2023 12.
Article in English | MEDLINE | ID: mdl-37983957

ABSTRACT

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoplasmic Reticulum Stress/genetics , Microglia/metabolism
3.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37131811

ABSTRACT

Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.

4.
Blood Adv ; 7(9): 1650-1665, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36508284

ABSTRACT

Extracellular protein disulfide isomerases (PDIs), including PDI, endoplasmic reticulum protein 57 (ERp57), ERp72, ERp46, and ERp5, are required for in vivo thrombus formation in mice. Platelets secrete PDIs upon activation, which regulate platelet aggregation. However, platelets secrete only ∼10% of their PDI content extracellularly. The intracellular role of PDIs in platelet function is unknown. Here, we aim to characterize the role of ERp5 (gene Pdia6) using platelet conditional knockout mice, platelet factor 4 (Pf4) Cre+/ERp5floxed (fl)/fl. Pf4Cre+/ERp5fl/fl mice developed mild macrothrombocytopenia. Platelets deficient in ERp5 showed marked dysregulation of their ER, indicated by a twofold upregulation of ER proteins, including PDI, ERp57, ERp72, ERp46, 78 kilodalton glucose-regulated protein (GRP78), and calreticulin. ERp5-deficient platelets showed an enhanced ER stress response to ex vivo and in vivo ER stress inducers, with enhanced phosphorylation of eukaryotic translation initiation factor 2A and inositol-requiring enzyme 1 (IRE1). ERp5 deficiency was associated with increased secretion of PDIs, an enhanced response to thromboxane A2 receptor activation, and increased thrombus formation in vivo. Our results support that ERp5 acts as a negative regulator of ER stress responses in platelets and highlight the importance of a disulfide isomerase in platelet ER homeostasis. The results also indicate a previously unanticipated role of platelet ER stress in platelet secretion and thrombosis. This may have important implications for the therapeutic applications of ER stress inhibitors in thrombosis.


Subject(s)
Blood Platelets , Thrombosis , Animals , Mice , Blood Platelets/metabolism , Platelet Aggregation , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Hemostasis , Thrombosis/metabolism
5.
Leukemia ; 36(10): 2430-2442, 2022 10.
Article in English | MEDLINE | ID: mdl-36042317

ABSTRACT

Activation-induced cytidine deaminase (AID) has been implicated as both a positive and a negative factor in the progression of B cell chronic lymphocytic leukemia (CLL), but the role that it plays in the development and progression of this disease is still unclear. We generated an AID knockout CLL mouse model, AID-/-/Eµ-TCL1, and found that these mice die significantly earlier than their AID-proficient counterparts. AID-deficient CLL cells exhibit a higher ER stress response compared to Eµ-TCL1 controls, particularly through activation of the IRE1/XBP1s pathway. The increased production of secretory IgM in AID-deficient CLL cells contributes to their elevated expression levels of XBP1s, while secretory IgM-deficient CLL cells express less XBP1s. This increase in XBP1s in turn leads AID-deficient CLL cells to exhibit higher levels of B cell receptor signaling, supporting leukemic growth and survival. Further, AID-/-/Eµ-TCL1 CLL cells downregulate the tumor suppressive SMAD1/S1PR2 pathway and have altered homing to non-lymphoid organs. Notably, CLL cells from patients with IgHV-unmutated disease express higher levels of XBP1s mRNA compared to those from patients with IgHV-mutated CLL. Our studies thus reveal novel mechanisms by which the loss of AID leads to worsened CLL and may explain why unmutated CLL is more aggressive than mutated CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Cytidine Deaminase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases , RNA, Messenger/genetics , Receptors, Antigen, B-Cell/genetics
7.
Immunol Rev ; 303(1): 35-51, 2021 09.
Article in English | MEDLINE | ID: mdl-34368957

ABSTRACT

The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.


Subject(s)
Plasma Cells , eIF-2 Kinase , Endoplasmic Reticulum Stress , Plasma Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Unfolded Protein Response , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
8.
J Biol Chem ; 296: 100781, 2021.
Article in English | MEDLINE | ID: mdl-34000298

ABSTRACT

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.


Subject(s)
Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Line , Endoribonucleases/chemistry , Humans , Models, Molecular , Protein Conformation, alpha-Helical , Protein Domains , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Ribonucleases/metabolism
9.
Cells ; 9(8)2020 08 06.
Article in English | MEDLINE | ID: mdl-32781621

ABSTRACT

Mammals have two insulin-like growth factors (IGF) that are key mediators of somatic growth, tissue differentiation, and cellular responses to stress. Thus, the mechanisms that regulate the bioavailability of IGFs are important in both normal and aberrant development. IGF-I levels are primarily controlled via the growth hormone-IGF axis, in response to nutritional status, and also reflect metabolic diseases and cancer. One mechanism that controls IGF bioavailablity is the binding of circulating IGF to a number of binding proteins that keep IGF in a stable, but receptor non-binding state. However, even before IGF is released from the cells that produce it, it undergoes an obligatory association with a ubiquitous chaperone protein, GRP94. This binding is required for secretion of a properly folded, mature IGF. This chapter reviews the known aspects of the interaction and highlights the specificity issues yet to be determined. The IGF-GRP94 interaction provides a potential novel mechanism of idiopathic short stature, involving the obligatory chaperone and not just IGF gene expression. It also provides a novel target for cancer treatment, as GRP94 activity can be either inhibited or enhanced.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Somatomedins/metabolism , Animals , Biomarkers/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , Humans , Insulin-Like Growth Factor I/chemistry , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Binding , Somatomedins/chemistry , Somatomedins/genetics
10.
Nat Commun ; 11(1): 723, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024827

ABSTRACT

How activated B cells build biosynthetic pathways and organelle structures necessary for subsequent robust antibody secretion is still unclear. The dominant model holds that nascent plasma cells adapt to increased antibody synthesis by activating the unfolded protein response (UPR) under the control of the transcription factor Xbp1. Here, by analyzing gene expression in activated B cells with or without plasma cell-inductive signals, we find that follicular B cells up-regulate a wide array of UPR-affiliated genes before initiating antibody secretion; furthermore, initial transcription of these loci requires the mTORC1 kinase adaptor, Raptor, but not Xbp1. Transcriptomic analyses of resting marginal zone B cells, which generate plasma cells with exceptionally rapid kinetics, reinforce these results by revealing the basal expression of UPR-affiliated mRNA networks without detectable Xbp1 activity. We thus conclude that B cells utilize mTORC1 to prepare for subsequent plasma cell function, before the onset of antibody synthesis.


Subject(s)
Antibodies/metabolism , B-Lymphocytes/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Unfolded Protein Response/physiology , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cell Differentiation , Gene Expression Regulation , Lipopolysaccharides/pharmacology , Lymphocyte Activation , Mechanistic Target of Rapamycin Complex 1/genetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Spleen/cytology , Unfolded Protein Response/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
11.
FASEB J ; 33(9): 9811-9827, 2019 09.
Article in English | MEDLINE | ID: mdl-31199681

ABSTRACT

The sensors of the unfolded protein response react to endoplasmic reticulum (ER) stress by transient activation of their enzymatic activities, which initiate various signaling cascades. In addition, the sensor IRE1α exhibits stress-induced clustering in a transient time frame similar to activation of its endoRNase activity. Previous work had suggested that the clustering response and RNase activity of IRE1α are functionally linked, but here we show that they are independent of each other and have different behaviors and modes of activation. Although both clustering and the RNase activity are responsive to luminal stress conditions and to depletion of the ER chaperone binding protein, RNase-inactive IRE1α still clusters and, conversely, full RNase activity can be accomplished without clustering. The clusters formed by RNase-inactive IRE1α are much larger and persist longer than those induced by ER stress. Clustering requires autophosphorylation, and an IRE1α mutant whose RNase domain is responsive to ligands that bind the kinase domain forms yet a third type of stress-independent cluster, with distinct physical properties and half-lives. These data suggest that IRE1α clustering can follow distinct pathways upon activation of the sensor.-Ricci, D., Marrocco, I., Blumenthal, D., Dibos, M., Eletto, D., Vargas, J., Boyle, S., Iwamoto, Y., Chomistek, S., Paton, J. C., Paton, A. W., Argon, Y. Clustering of IRE1α depends on sensing ER stress but not on its RNase activity.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/physiology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Line , Cluster Analysis , Endoribonucleases/genetics , Gene Deletion , Gene Expression Regulation, Enzymologic/physiology , Humans , Mice , Protein Serine-Threonine Kinases/genetics , Signal Transduction
13.
Mol Cell Biol ; 38(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30104252

ABSTRACT

We previously described a mechanism of acquired resistance of B-cell acute lymphoblastic leukemia to CD19-directed chimeric antigen receptor T-cell (CART) immunotherapy. It was based on in-frame insertions in or skipping of CD19 exon 2. To distinguish between epitope loss and defects in surface localization, we used retroviral transduction and genome editing to generate cell lines expressing CD19 exon 2 variants (CD19ex2vs) bearing vesicular stomatitis virus G protein (VSVg) tags. These lines were negative by live-cell flow cytometry with an anti-VSVg antibody and resistant to killing by VSVg-directed antibody-drug conjugates (ADCs), suggestive of a defect in surface localization. Indeed, pulse-chase and α-mannosidase inhibitor assays showed that all CD19ex2vs acquired endoplasmic reticulum (ER)-specific high-mannose-type sugars but not complex-type glycans synthesized in the Golgi apparatus. When fused with green fluorescent protein (GFP), CD19ex2vs (including a mutant lacking the relevant disulfide bond) showed colocalization with ER markers, implying protein misfolding. Mass spectrometric profiling of CD19-interacting proteins demonstrated that CD19ex2vs fail to bind to the key tetraspanin CD81 and instead interact with ER-resident chaperones, such as calnexin, and ER transporters involved in antigen presentation. Thus, even the intact domains of CD19ex2vs cannot be easily targeted with ADCs or current CD19 CARTs but could serve as sources of peptides for major histocompatibility complex (MHC)-restricted presentation and T-cell receptor (TCR)-mediated killing.


Subject(s)
Antigens, CD19/metabolism , Endoplasmic Reticulum/metabolism , Cell Line , Gene Editing/methods , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Immunotherapy/methods , Membrane Glycoproteins , Receptors, Antigen, T-Cell/metabolism , Retroviridae/metabolism , Viral Envelope Proteins
14.
PLoS One ; 13(7): e0200913, 2018.
Article in English | MEDLINE | ID: mdl-30024926

ABSTRACT

Toll like receptors (TLRs) share a conserved structure comprising the N-terminal ectodomain, a transmembrane segment and a C-terminal cytoplasmic Toll/IL-1 receptor (TIR) domain. Proper assembly of the TIR domain is crucial for signal transduction; however, the contribution of individual motifs within the TIR domain to TLR trafficking and signaling remains unclear. We targeted a highly conserved tyrosine (Y870) located in the box 1 region of the TIR domain of most TLRs, including TLR9, previously described to be a critical site of phosphorylation in TLR4. We reconstituted bone marrow-derived dendritic cells (BMDC) from Tlr9-/- mice WT TLR9 or Y870F or Y870A mutants. Despite normal interactions with the luminal chaperones GRP94 and UNC93B1, Y870F conferred only partial responsiveness to CpG, and Y870A had no activity and functioned as a dominant negative inhibitor when coexpressed with endogenous TLR9. This loss of function correlated with reduction or absence, respectively, of the 80 kDa mature form of TLR9. In Y870F-expressing cells, CpG-dependent signaling correlated directly with levels of the mature form, suggesting that signaling did not require tyrosine phosphorylation but rather that the Y870F mutation conferred reduced receptor levels due to defective processing or trafficking. Microscopy revealed targeting of the mutant protein to an autophagolysosome-like structure for likely degradation. Collectively we postulate that the conserved Y870 in the TIR domain does not participate in phosphorylation-induced signaling downstream of ligand recognition, but rather is crucial for proper TIR assembly and ER egress, resulting in maturation-specific stabilization of TLR9 within endolysosomes and subsequent pro-inflammatory signaling.


Subject(s)
Cytokines/metabolism , Mutation , Toll-Like Receptor 9/chemistry , Toll-Like Receptor 9/metabolism , Tyrosine/chemistry , Animals , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Phosphorylation , Protein Stability , Signal Transduction , Toll-Like Receptor 9/genetics , Tyrosine/genetics
15.
Horm Res Paediatr ; 89(2): 122-131, 2018.
Article in English | MEDLINE | ID: mdl-29402777

ABSTRACT

BACKGROUND: Immunoassays used to measure insulin-like growth factor (IGF)-I and -II concentrations are susceptible to interference from IGF-binding proteins. The aim of this study was to investigate the association of IGF-I and -II concentrations at birth with neonatal anthropometry using a liquid chromatography/mass spectrometry (LCMS) assay. METHODS: LCMS was used to measure IGF-I and -II concentrations in umbilical cord blood of term, healthy infants enrolled in the Cork BASELINE Birth Cohort Study. Weight, length, and occipitofrontal head circumference (OFC) were measured at birth and 2 months. RESULTS: Cord blood IGF-I and -II concentrations were measured in 1,100 infants. Mean (SD) IGF-I and -II concentrations were 52.5 (23.9) ng/mL and 424.3 (98.2) ng/mL, respectively. IGF-I and -II concentrations at birth were associated (p < 0.05) with weight (R2 = 0.19, R2 = 0.01), length (R2 = 0.07, R2 = 0.004), and OFC (R2 = 0.03, R2 = 0.04) at birth. Low IGF-I concentrations at birth were associated with increases in weight (p < 0.001) and OFC (p < 0.01) Z-scores in the first 2 months. CONCLUSION: Using an LCMS assay, we have shown that anthropometric parameters at birth are associated with IGF-I and weakly with IGF-II concentrations. This indicates that, at the time of birth, IGF-I is the more important growth factor for regulating infant growth.


Subject(s)
Birth Weight/physiology , Child Development/physiology , Fetal Blood , Insulin-Like Growth Factor II/analysis , Insulin-Like Growth Factor I/analysis , Female , Humans , Infant , Infant, Newborn , Male , Mass Spectrometry
16.
Front Immunol ; 9: 2934, 2018.
Article in English | MEDLINE | ID: mdl-30619294

ABSTRACT

The human IL22RA2 gene co-produces three protein isoforms in dendritic cells [IL-22 binding protein isoform-1 (IL-22BPi1), IL-22BPi2, and IL-22BPi3]. Two of these, IL-22BPi2 and IL-22BPi3, are capable of neutralizing the biological activity of IL-22. The function of IL-22BPi1, which differs from IL-22BPi2 through an in-frame 32-amino acid insertion provided by an alternatively spliced exon, remains unknown. Using transfected human cell lines, we demonstrate that IL-22BPi1 is secreted detectably, but at much lower levels than IL-22BPi2, and unlike IL-22BPi2 and IL-22BPi3, is largely retained in the endoplasmic reticulum (ER). As opposed to IL-22BPi2 and IL-22BPi3, IL-22BPi1 is incapable of neutralizing or binding to IL-22 measured in bioassay or assembly-induced IL-22 co-folding assay. We performed interactome analysis to disclose the mechanism underlying the poor secretion of IL-22BPi1 and identified GRP78, GRP94, GRP170, and calnexin as main interactors. Structure-function analysis revealed that, like IL-22BPi2, IL-22BPi1 binds to the substrate-binding domain of GRP78 as well as to the middle domain of GRP94. Ectopic expression of wild-type GRP78 enhanced, and ATPase-defective GRP94 mutant decreased, secretion of both IL-22BPi1 and IL-22BPi2, while neither of both affected IL-22BPi3 secretion. Thus, IL-22BPi1 and IL-22BPi2 are bona fide clients of the ER chaperones GRP78 and GRP94. However, only IL-22BPi1 activates an unfolded protein response (UPR) resulting in increased protein levels of GRP78 and GRP94. Cloning of the IL22RA2 alternatively spliced exon into an unrelated cytokine, IL-2, bestowed similar characteristics on the resulting protein. We also found that CD14++/CD16+ intermediate monocytes produced a higher level of IL22RA2 mRNA than classical and non-classical monocytes, but this difference disappeared in immature dendritic cells (moDC) derived thereof. Upon silencing of IL22RA2 expression in moDC, GRP78 levels were significantly reduced, suggesting that native IL22RA2 expression naturally contributes to upregulating GRP78 levels in these cells. The IL22RA2 alternatively spliced exon was reported to be recruited through a single mutation in the proto-splice site of a Long Terminal Repeat retrotransposon sequence in the ape lineage. Our work suggests that positive selection of IL-22BPi1 was not driven by IL-22 antagonism as in the case of IL-22BPi2 and IL-22BPi3, but by capacity for induction of an UPR response.


Subject(s)
Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Receptors, Interleukin/metabolism , Unfolded Protein Response , Cells, Cultured , Dendritic Cells/metabolism , Endoplasmic Reticulum Chaperone BiP , HEK293 Cells , HeLa Cells , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Humans , Interleukins/chemistry , Interleukins/genetics , Interleukins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Protein Binding , Protein Folding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , Receptors, Interleukin/chemistry , Receptors, Interleukin/genetics , Signal Transduction/genetics , Interleukin-22
17.
Mitochondrion ; 38: 6-16, 2018 01.
Article in English | MEDLINE | ID: mdl-28750948

ABSTRACT

Mitochondrial respiratory chain (RC) diseases and congenital disorders of glycosylation (CDG) share extensive clinical overlap but are considered to have distinct cellular pathophysiology. Here, we demonstrate that an essential physiologic connection exists between cellular N-linked deglycosylation capacity and mitochondrial function. Following identification of altered muscle and liver mitochondrial amount and function in two children with a CDG subtype caused by NGLY1 deficiency, we evaluated mitochondrial physiology in NGLY1 disease human fibroblasts, and in NGLY1-knockout mouse embryonic fibroblasts and C. elegans. Across these distinct evolutionary models of cytosolic NGLY1 deficiency, a consistent disruption of mitochondrial physiology was present involving modestly reduced mitochondrial content with more pronounced impairment of mitochondrial membrane potential, increased mitochondrial matrix oxidant burden, and reduced cellular respiratory capacity. Lentiviral rescue restored NGLY1 expression and mitochondrial physiology in human and mouse fibroblasts, confirming that NGLY1 directly influences mitochondrial function. Overall, cellular deglycosylation capacity is shown to be a significant factor in mitochondrial RC disease pathogenesis across divergent evolutionary species.


Subject(s)
Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/physiopathology , Fibroblasts/pathology , Fibroblasts/physiology , Mitochondria/pathology , Mitochondria/physiology , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Animals , Caenorhabditis elegans , Cell Respiration , Cells, Cultured , Child, Preschool , Electron Transport , Female , Gene Knockout Techniques , Genetic Complementation Test , Humans , Male , Membrane Potential, Mitochondrial , Mice, Knockout
19.
Mol Biol Cell ; 27(24): 3813-3827, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27682588

ABSTRACT

Loss of function of the enzyme ß-hexosaminidase A (HexA) causes the lysosomal storage disorder Tay-Sachs disease (TSD). It has been proposed that mutations in the α chain of HexA can impair folding, enzyme assembly, and/or trafficking, yet there is surprisingly little known about the mechanisms of these potential routes of pathogenesis. We therefore investigated the biosynthesis and trafficking of TSD-associated HexA α mutants, seeking to identify relevant cellular quality control mechanisms. The α mutants E482K and G269S are defective in enzymatic activity, unprocessed by lysosomal proteases, and exhibit altered folding pathways compared with wild-type α. E482K is more severely misfolded than G269S, as observed by its aggregation and inability to associate with the HexA ß chain. Importantly, both mutants are retrotranslocated from the endoplasmic reticulum (ER) to the cytosol and are degraded by the proteasome, indicating that they are cleared via ER-associated degradation (ERAD). Leveraging these discoveries, we observed that manipulating the cellular folding environment or ERAD pathways can alter the kinetics of mutant α degradation. Additionally, growth of patient fibroblasts at a permissive temperature or with chemical chaperones increases cellular Hex activity by improving mutant α folding. Therefore modulation of the ER quality control systems may be a potential therapeutic route for improving some forms of TSD.


Subject(s)
Hexosaminidase A/genetics , Hexosaminidase A/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , HEK293 Cells , Hexosaminidase A/biosynthesis , Hexosaminidase A/physiology , Humans , Lysosomes/metabolism , Molecular Chaperones/metabolism , Mutation , Primary Cell Culture , Protein Transport/physiology , Proteolysis , Tay-Sachs Disease/genetics , Tay-Sachs Disease/metabolism , beta-N-Acetylhexosaminidases/metabolism
20.
Endocrinology ; 157(5): 1914-28, 2016 05.
Article in English | MEDLINE | ID: mdl-26982636

ABSTRACT

IGFs are critical for normal intrauterine and childhood growth and sustaining health throughout life. We showed previously that the production of IGF-1 and IGF-2 requires interaction with the chaperone glucose-regulated protein 94 (GRP94) and that the amount of secreted IGFs is proportional to the GRP94 activity. Therefore, we tested the hypothesis that functional polymorphisms of human GRP94 affect IGF production and thereby human health. We describe a hypomorphic variant of human GRP94, P300L, whose heterozygous carriers have 9% lower circulating IGF-1 concentration. P300L was found first in a child with primary IGF deficiency and was later shown to be a noncommon single-nucleotide polymorphism with frequencies of 1%-4% in various populations. When tested in the grp94(-/-) cell-based complementation assay, P300L supported only approximately 58% of IGF secretion relative to wild-type GRP94. Furthermore, recombinant P300L showed impaired nucleotide binding activity. These in vitro data strongly support a causal relationship between the GRP94 variant and the decreased concentration of circulating IGF-1, as observed in human carriers of P300L. Thus, mutations in GRP94 that affect its IGF chaperone activity represent a novel causal genetic mechanism that limits IGF biosynthesis, quite a distinct mechanism from the known genes in the GH/IGF signaling network.


Subject(s)
HSP70 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Somatomedins/biosynthesis , Alleles , DNA Mutational Analysis , Gene Frequency , HSP70 Heat-Shock Proteins/metabolism , Humans , Membrane Proteins/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...