Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(13): 131801, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613276

ABSTRACT

An amplitude analysis of the B^{0}→K^{*0}µ^{+}µ^{-} decay is presented using a dataset corresponding to an integrated luminosity of 4.7 fb^{-1} of pp collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q^{2}-unbinned amplitude analysis, where q^{2} is the µ^{+}µ^{-} invariant mass squared. Long-distance contributions, which originate from nonfactorizable QCD processes, are systematically investigated, and the most accurate assessment to date of their impact on the physical observables is obtained. The pattern of measured corrections to the short-distance couplings is found to be consistent with previous analyses of b- to s-quark transitions, with the largest discrepancy from the standard model predictions found to be at the level of 1.8 standard deviations. The global significance of the observed differences in the decay is 1.4 standard deviations.

2.
Phys Rev Lett ; 132(8): 081901, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457697

ABSTRACT

The production rate of Λ_{b}^{0} baryons relative to B^{0} mesons in pp collisions at a center-of-mass energy sqrt[s]=13 TeV is measured by the LHCb experiment. The ratio of Λ_{b}^{0} to B^{0} production cross sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e^{+}e^{-} collisions, and increases by a factor of ∼2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λ_{b}^{0} to B^{0} cross sections is higher than what is measured in e^{+}e^{-} collisions, but converges with the e^{+}e^{-} ratio as the momentum increases. These results imply that the evolution of heavy b quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with several models and implications for the mechanisms enforcing quark confinement are discussed.

4.
Nat Commun ; 13(1): 6180, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36261453

ABSTRACT

The CAST-CAPP axion haloscope, operating at CERN inside the CAST dipole magnet, has searched for axions in the 19.74 µeV to 22.47 µeV mass range. The detection concept follows the Sikivie haloscope principle, where Dark Matter axions convert into photons within a resonator immersed in a magnetic field. The CAST-CAPP resonator is an array of four individual rectangular cavities inserted in a strong dipole magnet, phase-matched to maximize the detection sensitivity. Here we report on the data acquired for 4124 h from 2019 to 2021. Each cavity is equipped with a fast frequency tuning mechanism of 10 MHz/ min between 4.774 GHz and 5.434 GHz. In the present work, we exclude axion-photon couplings for virialized galactic axions down to gaγγ = 8 × 10-14 GeV-1 at the 90% confidence level. The here implemented phase-matching technique also allows for future large-scale upgrades.

5.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29459412

ABSTRACT

The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of 'cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

SELECTION OF CITATIONS
SEARCH DETAIL
...