ABSTRACT
The global circulation of SARS-CoV-2 has been extensively documented, yet the dynamics within Central America, particularly Nicaragua, remain underexplored. This study characterizes the genomic diversity of SARS-CoV-2 in Nicaragua from March 2020 through December 2022, utilizing 1064 genomes obtained via next-generation sequencing. These sequences were selected nationwide and analyzed for variant classification, lineage predominance, and phylogenetic diversity. We employed both Illumina and Oxford Nanopore Technologies for all sequencing procedures. Results indicated a temporal and spatial shift in dominant lineages, initially from B.1 and A.2 in early 2020 to various Omicron subvariants towards the study's end. Significant lineage shifts correlated with changes in COVID-19 positivity rates, underscoring the epidemiological impact of variant dissemination. The comparative analysis with regional data underscored the low diversity of circulating lineages in Nicaragua and their delayed introduction compared to other countries in the Central American region. The study also linked specific viral mutations with hospitalization rates, emphasizing the clinical relevance of genomic surveillance. This research advances the understanding of SARS-CoV-2 evolution in Nicaragua and provide valuable information regarding its genetic diversity for public health officials in Central America. We highlight the critical role of ongoing genomic surveillance in identifying emergent lineages and informing public health strategies.
ABSTRACT
Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.
Subject(s)
Dengue Virus , Dengue , Serogroup , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Child , Female , Male , Nicaragua/epidemiology , Child, Preschool , Risk Factors , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cohort StudiesABSTRACT
BACKGROUND: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease. METHODS: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and sudy participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients. RESULTS: We enrolled a total of 15,266 participants, of whom 3,227 (21%) were positive for DENV infection. Of 2,630 cases with serotype result by RT-PCR, 557 corresponded to DENV1, 992 to DENV2, 759 to DENV3 and 322 to DENV4. Severe disease was more prevalent among secondary DENV2 and DENV4 cases, while similar disease severity was observed in both primary and secondary DENV1 and DENV3 cases. According to the 1997 World Health Organization (WHO) severity classification, both DENV2 and DENV3 caused a higher proportion of severe disease compared to other serotypes, whereas DENV3 caused the greatest percentage of severity according to the WHO-2009 classification. DENV2 was associated with increased odds of pleural effusion and low platelet count, while DENV3 was associated with both hypotensive and compensated shock. CONCLUSIONS: These findings demonstrate differences in dengue severity by serotype and immune status and emphasize the critical need for a dengue vaccine with balanced effectiveness against all four serotypes, particularly as existing vaccines show variable efficacy by serotype and serostatus.
ABSTRACT
Chikungunya can result in debilitating arthralgia, often presenting as acute, self-limited pain, but occasionally manifesting chronically. Little is known about differences in chikungunya-associated arthralgia comparing children to adults over time. To characterize long-term chikungunya-associated arthralgia, we recruited 770 patients (105 0-4 years old [y/o], 200 5-9 y/o, 307 10-15 y/o, and 158 16+ y/o) with symptomatic chikungunya virus infections in Managua, Nicaragua, during two consecutive chikungunya epidemics (2014-2015). Participants were assessed at ~15 days and 1, 3, 6, 12, and 18 months post-fever onset. Following clinical guidelines, we defined participants by their last reported instance of arthralgia as acute (≤10 days post-fever onset), interim (>10 and <90 days), or chronic (≥90 days) cases. We observed a high prevalence of arthralgia (80-95%) across all ages over the study period. Overall, the odds of acute arthralgia increased in an age-dependent manner, with the lowest odds of arthralgia in the 0-4 y/o group (odds ratio [OR]: 0.27, 95% confidence interval [CI]: 0.14-0.51) and the highest odds of arthralgia in the 16+ y/o participants (OR: 4.91, 95% CI: 1.42-30.95) relative to 10-15 y/o participants. Females had higher odds of acute arthralgia than males (OR: 1.63, 95% CI: 1.01-2.65) across all ages. We found that 23-36% of pediatric and 53% of adult participants reported an instance of post-acute arthralgia. Children exhibited the highest prevalence of post-acute polyarthralgia in their legs, followed by the hands and torso - a pattern not seen among adult participants. Further, we observed pediatric chikungunya presenting in two distinct phases: the acute phase and the subsequent interim/chronic phases. Thus, differences in the presentation of arthralgia were observed across age, sex, and disease phase in this longitudinal chikungunya cohort. Our results elucidate the long-term burden of chikungunya-associated arthralgia among pediatric and adult populations.
Subject(s)
Chikungunya Fever , Chikungunya virus , Adult , Male , Female , Humans , Child , Chikungunya Fever/complications , Chikungunya Fever/epidemiology , Prospective Studies , Nicaragua/epidemiology , Arthralgia/etiology , Arthralgia/complications , Fever/complicationsABSTRACT
Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on pre-existing antibodies and the subsequent infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) has been shown to increase DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by all four serotypes in a pediatric Nicaraguan cohort. Of 3,412 participants in 2022, 10.6% experienced symptomatic DENV infections caused by DENV1 (n=139), DENV4 (n=133), DENV3 (n=54), DENV2 (n=9), or an undetermined serotype (n=39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since the last infection, cohort year, and repeat measurements were used to predict disease risk. Compared to flavivirus-naïve participants, primary ZIKV infection increased disease risk of DENV4 (relative risk = 2.62, 95% confidence interval: 1.48-4.63) and DENV3 (2.90, 1.34-6.27) but not DENV1 (1.20, 0.72-1.99). Primary DENV infection or a DENV followed by ZIKV infection also increased DENV4 risk. We re-analyzed 19 years of cohort data and demonstrated that prior flavivirus-immunity and pre-existing antibody titer differentially affected disease risk for incoming serotypes, increasing risk of DENV2 and DENV4, protecting against DENV1, and protecting at high titers but enhancing at low titers against DENV3. We thus find that prior ZIKV infection, like prior DENV infection, increases risk of certain DENV serotypes. Cross-reactivity among flaviviruses should be carefully considered when assessing vaccine safety and efficacy.
ABSTRACT
Chikungunya can result in debilitating arthralgia, often presenting as acute, self-limited pain, but occasionally manifesting chronically. Little is known about differences in chikungunya-associated arthralgia comparing children to adults over time. To characterize long-term chikungunya-associated arthralgia, we recruited 770 patients (105 0-4 year olds [y/o], 200 5-9 y/o, 307 10-15 y/o, and 158 16+ y/o) with symptomatic chikungunya virus infections in Managua, Nicaragua, during two chikungunya epidemics (2014-2015). Participants were assessed at ~15 days and 1, 3, 6, 12, and 18 months post-fever onset. Following clinical guidelines, we defined participants by their last reported instance of arthralgia as acute (≤10 days post-fever onset), interim (>10 and <90 days), or chronic (≥90 days) cases. We observed a high prevalence of arthralgia (80-95%) across all ages over the study period. Overall, the odds of acute arthralgia increased in an age-dependent manner, with the lowest odds of arthralgia in the 0-4 y/o group (odds ratio [OR]: 0.27, 95% confidence interval [CI]: 0.14-0.51) and the highest odds of arthralgia in the 16+ y/o participants (OR: 4.91, 95% CI: 1.42-30.95) relative to 10-15 y/o participants. Females had a higher odds of acute arthralgia than males (OR: 1.63, 95% CI: 1.01-2.65) across all ages. We found that 23-36% of pediatric and 53% of adult participants reported an instance of post-acute arthralgia. Children exhibited the highest prevalence of post-acute polyarthralgia in their legs, followed by the hands and torso - a pattern not seen among adult participants. Further, we observed pediatric chikungunya presenting in two distinct phases: the acute phase and the associated interim and chronic phases. Differences in the presentation of arthralgia were observed across age, sex, and disease phase in this longitudinal chikungunya cohort. Our results elucidate the long-term burden of chikungunya-associated arthralgia among pediatric and adult populations.
ABSTRACT
The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
Subject(s)
Dengue Virus/immunology , Severe Dengue/epidemiology , Zika Virus Infection/epidemiology , Zika Virus Infection/immunology , Zika Virus/immunology , Antibodies, Viral/blood , Dengue Vaccines/immunology , Humans , Immunogenicity, Vaccine , Nicaragua/epidemiology , Risk , SerogroupABSTRACT
BACKGROUND: Paedeatric Zika remains an understudied topic. WHO and the Pan American Health Organization (PAHO) Zika case definitions have not been assessed in children. We aimed to characterise clinical profiles and evaluate the diagnostic performance of the WHO and PAHO case definitions in a large cohort of paediatric Zika cases. METHODS: From January, 2016 to February, 2017, encompassing the major 2016 Zika epidemic, participants in the Pediatric Dengue Cohort Study (PDCS) in Managua, Nicaragua, were encouraged to visit the study health centre at first indication of any illness. PDCS participants were aged 2-14 years, healthy at enrolment, and recruited before the initiation of the present study. Molecular and serological assays were used to test participants exhibiting any of four broad clinical profiles suspected of resulting from a symptomatic Zika virus infection. These clinical profiles were: fever and at least two of headache, retro-orbital pain, myalgia, arthralgia, rash, haemorrhagic manifestations, and leukopenia; fever and at least two of nausea or vomiting, rash, aches and pains, positive tourniquet test, leukopenia, and any dengue warning sign; undifferentiated fever without evident cause, with or without any other clinical finding; and afebrile rash with or without any other clinical finding. We characterised acute clinical findings (signs, symptoms, and complete blood counts) in both Zika cases and non-Zika cases. FINDINGS: We prospectively followed a cohort of about 3700 children, of which 1110 were deemed eligible for inclusion. Four participants with laboratory-confirmed Zika (three co-infections with dengue virus, one missing complete blood count data) and two participants who were non-Zika cases (missing complete blood count data) were excluded from analysis. We analysed 556 laboratory-confirmed Zika and 548 non-Zika cases. The WHO case definition captured 176 confirmed Zika cases, and the PAHO definition 109 confirmed Zika cases, who presented with the most clinical findings and a dengue-like clinical profile. The remaining two thirds of Zika cases, principally characterised by undifferentiated fever or afebrile rash, were missed. Among Zika cases, rash (n=440)-particularly generalised erythematous rash (n=334)-fever (n=333), leukopenia (n=217), and headache (n=203) were most common and peaked within 3 days of illness onset. The most common Zika presentation over the first week of illness was rash only (n=80). The sensitivity of Zika case definitions increased across paediatric age (from 11·3% to 56·1% for the WHO case definition and from 6·0% to 36·6% for the PAHO case definition), as the prevalence of most clinical findings (particularly arthralgia) increased with age, irrespective of previous dengue virus infection. Consequently, Zika manifested differently across paediatric age; older Zika cases presented with a dengue-like clinical profile while younger Zika cases presented with undifferentiated fever or afebrile rash. INTERPRETATION: We provide the most thorough description of paediatric Zika to date. Most paediatric Zika cases go undetected under the WHO and PAHO case definitions, suggesting that current standards for Zika case ascertainment require revision. Zika manifests with mild but differing clinical profiles across paediatric age, presenting major challenges to diagnosis, surveillance, and efforts to control future Zika epidemics. FUNDING: US National Institutes of Health.
Subject(s)
Clinical Decision Rules , Zika Virus Infection/pathology , Adolescent , Child , Child, Preschool , Female , Humans , Male , Molecular Diagnostic Techniques , Nicaragua , Prospective Studies , Sensitivity and Specificity , Serologic Tests , Zika Virus Infection/diagnosisABSTRACT
Dengue virus (DENV) is the most prevalent human vector-borne viral disease. The force of infection (FoI), the rate at which susceptible individuals are infected in a population, is an important metric for infectious disease modeling. Understanding how and why the FoI of DENV changes over time is critical for developing immunization and vector control policies. We used age-stratified seroprevalence data from 12 years of the Pediatric Dengue Cohort Study in Nicaragua to estimate the annual FoI of DENV from 1994 to 2015. Seroprevalence data revealed a change in the rate at which children acquire DENV-specific immunity: in 2004, 50% of children age >4 years were seropositive, but by 2015, 50% seropositivity was reached only by age 11 years. We estimated a spike in the FoI in 1997-1998 and 1998-1999 and a gradual decline thereafter, and children age <4 years experienced a lower FoI. Two hypotheses to explain the change in the FoI were tested: (i) a transition from introduction of specific DENV serotypes to their endemic transmission and (ii) a population demographic transition due to declining birth rates and increasing life expectancy. We used mathematical models to simulate these hypotheses. We show that the initial high FoI can be explained by the introduction of DENV-3 in 1994-1998, and that the overall gradual decline in the FoI can be attributed to demographic shifts. Changes in immunity and demographics strongly impacted DENV transmission in Nicaragua. Population-level measures of transmission intensity are dynamic and thus challenging to use to guide vaccine implementation locally and globally.
Subject(s)
Antibodies, Viral/blood , Dengue Virus/isolation & purification , Dengue/epidemiology , Dengue/transmission , Seroepidemiologic Studies , Adolescent , Child , Child, Preschool , Dengue/virology , Female , Humans , Male , Nicaragua/epidemiology , Prospective Studies , Public Health Surveillance , Time FactorsABSTRACT
In 2015, a Zika epidemic in Brazil began spreading throughout the Americas. Zika virus (ZIKV) entered Managua, Nicaragua, in January 2016 and caused an epidemic that peaked in July-September 2016. ZIKV seropositivity was estimated among participants of pediatric (n = 3,740) and household (n = 2,147) cohort studies, including an adult-only subset from the household cohort (n = 1,074), in Managua. Seropositivity was based on a highly sensitive and specific assay, the Zika NS1 blockade-of-binding ELISA, which can be used in dengue-endemic populations. Overall seropositivity for the pediatric (ages 2-14), household (ages 2-80), and adult (ages 15-80) cohorts was 36, 46, and 56%, respectively. Trend, risk factor, and contour mapping analyses demonstrated that ZIKV seroprevalence increased nonlinearly with age and that body surface area was statistically associated with increasing seroprevalence in children. ZIKV seropositivity was higher in females than in males across almost all ages, with adjusted prevalence ratios in children and adults of 1.11 (95% CI: 1.02-1.21) and 1.14 (95% CI: 1.01-1.28), respectively. No household-level risk factors were statistically significant in multivariate analyses. A spatial analysis revealed a 10-15% difference in the risk of ZIKV infections across our 3-km-wide study site, suggesting that ZIKV infection risk varies at small spatial scales. To our knowledge, this is the largest ZIKV seroprevalence study reported in the Americas, and the only one in Central America and in children to date. It reveals a high level of immunity against ZIKV in Managua as a result of the 2016 epidemic, making a second large Zika epidemic unlikely in the near future.
Subject(s)
Epidemics , Zika Virus Infection/epidemiology , Zika Virus , Adolescent , Child , Child, Preschool , Female , Humans , Male , Nicaragua/epidemiology , Risk Factors , Seroepidemiologic Studies , Sex FactorsABSTRACT
Zika virus (ZIKV) infection recently caused major epidemics in the Americas and is linked to congenital birth defects and Guillain-Barré Syndrome. A pilot study of ZIKV infection in Nicaraguan households was conducted from August 31 to October 21, 2016, in Managua, Nicaragua. We enrolled 33 laboratory-confirmed Zika index cases and their household members (109 contacts) and followed them on days 3-4, 6-7, 9-10, and 21, collecting serum/plasma, urine, and saliva specimens along with clinical, demographic, and socio-economic status information. Collected samples were processed by rRT-PCR to determine viral load (VL) and duration of detectable ZIKV RNA in human bodily fluids. At enrollment, 11 (10%) contacts were ZIKV rRT-PCR-positive and 23 (21%) were positive by IgM antibodies; 3 incident cases were detected during the study period. Twenty of 33 (61%) index households had contacts with ZIKV infection, with an average of 1.9 (range 1-6) positive contacts per household, and in 60% of these households, ≥50% of the members were positive for ZIKV infection. Analysis of clinical information allowed us to estimate the symptomatic to asymptomatic (S:A) ratio of 14:23 (1:1.6) among the contacts, finding 62% of the infections to be asymptomatic. The maximum number of days during which ZIKV RNA was detected was 7 days post-symptom onset in saliva and serum/plasma and 22 days in urine. Overall, VL levels in serum/plasma, saliva, and urine specimens were comparable, with means of 5.6, 5.3 and 4.5 log10 copies/ml respectively, with serum attaining the highest VL peak at 8.1 log10 copies/ml. Detecting ZIKV RNA in saliva over a similar time-period and level as in serum/plasma indicates that saliva could potentially serve as a more accessible diagnostic sample. Finding the majority of infections to be asymptomatic emphasizes the importance of silent ZIKV transmission and helps inform public health interventions in the region and globally.