Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Neurol ; 14: 1282059, 2023.
Article in English | MEDLINE | ID: mdl-38046586

ABSTRACT

Acute necrotizing encephalopathy 1 (ANE1) is a very rare disorder associated with a dominant heterozygous mutation in the RANBP2 (RAN binding protein 2) gene. ANE1 is frequently triggered by a febrile infection and characterized by serious and irreversible neurological damage. Although only a few hundred cases have been reported, mutations in RANBP2 are only partially penetrant and can occur de novo, suggesting that their frequency may be higher in some populations. Genetic diagnosis is a lengthy process, potentially delaying definitive diagnosis. We therefore developed a rapid bedside qPCR-based tool for early diagnosis and screening of ANE1 mutations. Primers were designed to specifically assess RANBP2 and not RGPD (RANBP2 and GCC2 protein domains) and discriminate between wild-type or mutant RANBP2. Nasal epithelial cells were obtained from two individuals with known RANBP2 mutations and two healthy control individuals. RANBP2-specific reverse transcription followed by allele-specific primer qPCR amplification confirmed the specific detection of heterozygously expressed mutant RANBP2 in the ANE1 samples. This study demonstrates that allele-specific qPCR can be used as a rapid and inexpensive diagnostic tool for ANE1 using preexisting equipment at local hospitals. It can also be used to screen non-hospitalized family members and at risk-population to better establish the frequency of non-ANE-associated RANBP2 mutations, as well as possible tissue-dependent expression patterns. Systematic review registration: The protocol was registered in the international prospective register of systematic reviews (PROSPERO- CRD42023443257).

3.
FEBS Lett ; 597(20): 2519-2533, 2023 10.
Article in English | MEDLINE | ID: mdl-37795679

ABSTRACT

Ran-binding protein 2 (RANBP2)/Nup358 is a nucleoporin and a key component of the nuclear pore complex. Through its multiple functions (e.g., SUMOylation, regulation of nucleocytoplasmic transport) and subcellular localizations (e.g., at the nuclear envelope, kinetochores, annulate lamellae), it is involved in many cellular processes. RANBP2 dysregulation or mutation leads to the development of human pathologies, such as acute necrotizing encephalopathy 1, cancer, neurodegenerative diseases, and it is also involved in viral infections. The chromosomal region containing the RANBP2 gene is highly dynamic, with high structural variation and recombination events that led to the appearance of a gene family called RANBP2 and GCC2 Protein Domains (RGPD), with multiple gene loss/duplication events during ape evolution. Although RGPD homoplasy and maintenance during evolution suggest they might confer an advantage to their hosts, their functions are still unknown and understudied. In this review, we discuss the appearance and importance of RANBP2 in metazoans and its function-related pathologies, caused by an alteration of its expression levels (through promotor activity, post-transcriptional, or post-translational modifications), its localization, or genetic mutations.


Subject(s)
Molecular Chaperones , Nuclear Pore Complex Proteins , Humans , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Molecular Chaperones/metabolism , Active Transport, Cell Nucleus , Nuclear Envelope
4.
Immunohorizons ; 7(3): 243-255, 2023 03 01.
Article in English | MEDLINE | ID: mdl-37000496

ABSTRACT

Pathogens that persist in their host induce immune dysfunctions even in the absence of detectable replication. To better understand the phenotypic and functional changes that persistent infections induce in sentinel innate immune cells, we developed human PBMC-based HIV models of persistent infection. Autologous nonactivated PBMCs were cocultured with chronically infected, acutely infected, or uninfected cells and were then analyzed by unsupervised high-dimensional flow cytometry. Using this approach, we identified prevalent patterns of innate immune dysfunctions associated with persistent HIV infections that at least in part mirror immune dysfunctions observed in patients. In one or more models of chronic infection, bystander CD16+ NK cells expressing markers of activation, such as CD94, CD45RO, CD62L, CD69, CD25, and immune checkpoints PD1, Tim3, TIGIT, NKG2A and Lag3, were significantly reduced. Conversely, helper ILC subsets expressing PDL1/PDL2 were significantly enriched in chronic infection compared with either uninfected or acute infection, suggesting that chronic HIV-1 infection was associated with an inhibitory environment for bystander ILC and NK subsets. The cell-based models of persistent infection that we describe here provide versatile tools to explore the molecular mechanisms of these immune dysfunctions and unveil the contribution of innate immunity in sustaining pathogen persistence.


Subject(s)
HIV Infections , Humans , Persistent Infection , Immunity, Innate , Leukocytes, Mononuclear , Killer Cells, Natural
5.
Cell Chem Biol ; 29(7): 1113-1125.e6, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35728599

ABSTRACT

The increasingly frequent outbreaks of pathogenic viruses have underlined the urgent need to improve our arsenal of antivirals that can be deployed for future pandemics. Innate immunity is a powerful first line of defense against pathogens, and compounds that boost the innate response have high potential to act as broad-spectrum antivirals. Here, we harnessed localization-dependent protein-complementation assays (called Alpha Centauri) to measure the nuclear translocation of interferon regulatory factors (IRFs), thus providing a readout of innate immune activation following viral infection that is applicable to high-throughput screening of immunomodulatory molecules. As proof of concept, we screened a library of kinase inhibitors on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identified Gilteritinib as a powerful enhancer of innate responses to viral infection. This immunostimulatory activity of Gilteritinib was found to be dependent on the AXL-IRF7 axis and results in a broad and potent antiviral activity against unrelated RNA viruses.


Subject(s)
COVID-19 , Virus Diseases , Antiviral Agents/pharmacology , Humans , Immunity, Innate , SARS-CoV-2 , Virus Diseases/drug therapy
6.
Emerg Microbes Infect ; 11(1): 761-774, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35191820

ABSTRACT

Usutu virus (USUV) and West Nile virus (WNV) are phylogenetically close emerging arboviruses and constitute a global public health threat. Since USUV and WNV are transmitted by mosquitoes, the first immune cells they encounter are skin-resident dendritic cells, the most peripheral outpost of immune defense. This unique network is composed of Langerhans cells (LCs) and dermal DCs, which reside in the epidermis and the dermis, respectively. Using human skin explants, we show that while both viruses can replicate in keratinocytes, they can also infect resident DCs with distinct tropism: WNV preferentially infects DCs in the dermis, whereas USUV has a greater propensity to infect LCs. Using both purified human epidermal LCs (eLCs) and monocyte derived LCs (MoLCs), we confirm that LCs sustain a faster and more efficient replication of USUV than WNV and that this correlates with a more intense innate immune response to USUV compared with WNV. Next, we show that ectopic expression of the LC-specific C-type lectin receptor (CLR), langerin, in HEK293T cells allows WNV and USUV to bind and enter, but supports the subsequent replication of USUV only. Conversely, blocking or silencing langerin in MoLCs or eLCs made them resistant to USUV infection, thus demonstrating that USUV uses langerin to enter and replicate in LCs. Altogether, our results demonstrate that LCs constitute privileged target cells for USUV in human skin, because langerin favours its entry and replication. Intriguingly, this suggests that USUV efficiently escapes the antiviral functions of langerin, which normally safeguards LCs from most viral infections.


Subject(s)
Flavivirus Infections , West Nile Fever , West Nile virus , Animals , Flavivirus , HEK293 Cells , Humans , Langerhans Cells , West Nile virus/genetics
7.
Viruses ; 13(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34835003

ABSTRACT

Intrinsic immunity is orchestrated by a wide range of host cellular proteins called restriction factors. They have the capacity to interfere with viral replication, and most of them are tightly regulated by interferons (IFNs). In addition, their regulation through post-translational modifications (PTMs) constitutes a major mechanism to shape their action positively or negatively. Following viral infection, restriction factor modification can be decisive. Palmitoylation of IFITM3, SUMOylation of MxA, SAMHD1 and TRIM5α or glycosylation of BST2 are some of those PTMs required for their antiviral activity. Nonetheless, for their benefit and by manipulating the PTMs machinery, viruses have evolved sophisticated mechanisms to counteract restriction factors. Indeed, many viral proteins evade restriction activity by inducing their ubiquitination and subsequent degradation. Studies on PTMs and their substrates are essential for the understanding of the antiviral defense mechanisms and provide a global vision of all possible regulations of the immune response at a given time and under specific infection conditions. Our aim was to provide an overview of current knowledge regarding the role of PTMs on restriction factors with an emphasis on their impact on viral replication.


Subject(s)
Host-Pathogen Interactions , Protein Processing, Post-Translational , Virus Diseases , Antigens, CD , Antiviral Restriction Factors , GPI-Linked Proteins , Glycosylation , Humans , Membrane Proteins , Myxovirus Resistance Proteins , RNA-Binding Proteins , SAM Domain and HD Domain-Containing Protein 1 , Sumoylation , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Viral Proteins/metabolism , Virus Replication/physiology
8.
Virologie (Montrouge) ; 25(3): 153-167, 2021 06 01.
Article in French | MEDLINE | ID: mdl-34240709

ABSTRACT

The recent revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and acquisition speed, led to the ability to visualize nano-scaled objects. Currently, the use of a new generation of super-resolution fluorescence microscopes coupled to improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus and molecule level. In this review, after a brief chronological description of these new approaches, we highlight several examples of super-resolution microscopies that have allowed to revisit our understanding of several human viruses and of host-pathogen interactions.

9.
Virologie (Montrouge) ; 25(3): 47-60, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34240711

ABSTRACT

The recent revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and acquisition speed, led to the ability to visualize nano-scaled objects. Currently, the use of a new generation of super-resolution fluorescence microscopes coupled to improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus and molecule level. In this review, after a brief chronological description of these new approaches, we highlight several examples of super-resolution microscopies that have allowed to revisit our understanding of several human viruses and of host-pathogen interactions.


Subject(s)
Single Molecule Imaging , Viruses , Fluorescent Dyes , Humans , Microscopy, Fluorescence
10.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33402530

ABSTRACT

The recent emergence and reemergence of viruses in the human population has highlighted the need to develop broader panels of therapeutic molecules. High-throughput screening assays opening access to untargeted steps of the viral replication cycle will provide powerful leverage to identify innovative antiviral molecules. We report here the development of an innovative protein complementation assay, termed αCentauri, to measure viral translocation between subcellular compartments. As a proof of concept, the Centauri fragment was either tethered to the nuclear pore complex or sequestered in the nucleus, while the complementary α fragment (<16 amino acids) was attached to the integrase proteins of infectious HIV-1. The translocation of viral ribonucleoproteins from the cytoplasm to the nuclear envelope or to the nucleoplasm efficiently reconstituted superfolder green fluorescent protein or NanoLuc αCentauri reporters. These fluorescence- or bioluminescence-based assays offer a robust readout of specific steps of viral infection in a multiwell format that is compatible for high-throughput screening and is validated by a short hairpin RNA-based prototype screen.


Subject(s)
High-Throughput Screening Assays/methods , Virus Diseases/metabolism , Virus Replication/physiology , Cell Line , Cell Nucleus/metabolism , Cytoplasm/metabolism , Green Fluorescent Proteins/metabolism , HIV Infections/metabolism , HeLa Cells , Humans , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Ribonucleoproteins/metabolism , Virus Replication/drug effects
11.
Nat Microbiol ; 5(10): 1247-1261, 2020 10.
Article in English | MEDLINE | ID: mdl-32690953

ABSTRACT

To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.


Subject(s)
DNA Repair , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Immunity, Innate , Viral Regulatory and Accessory Proteins/metabolism , Virus Integration , Gene Expression Regulation, Viral , HIV Infections/genetics , HIV Infections/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Models, Biological , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinational DNA Repair , Sumoylation
12.
Viruses ; 12(6)2020 06 11.
Article in English | MEDLINE | ID: mdl-32545337

ABSTRACT

Death domain-associated protein 6 (Daxx) is a multifunctional, ubiquitously expressed and highly conserved chaperone protein involved in numerous cellular processes, including apoptosis, transcriptional repression, and carcinogenesis. In 2015, we identified Daxx as an antiretroviral factor that interfered with HIV-1 replication by inhibiting the reverse transcription step. In the present study, we sought to unravel the molecular mechanism of Daxx-mediated restriction and, in particular, to identify the protein(s) that Daxx targets in order to achieve its antiviral activity. First, we show that the SUMO-interacting motif (SIM) located at the C-terminus of the protein is strictly required for Daxx to inhibit HIV-1 reverse transcription. By performing a quantitative proteomic screen combined with classical biochemical analyses, we found that Daxx associated with incoming HIV-1 cores through a SIM-dependent interaction with cyclophilin A (CypA) and capsid (CA). Daxx was found to reside within a multiprotein complex associated with viral capsids, also containing TNPO3, TRIM5α, and TRIM34. Given the well-known influence of these cellular factors on the stability of HIV-1 cores, we investigated the effect of Daxx on the cytoplasmic fate of incoming cores and found that Daxx prevented HIV-1 uncoating in a SIM-dependent manner. Altogether, our findings suggest that, by recruiting TNPO3, TRIM5α, and TRIM34 and possibly other proteins onto incoming HIV-1 cores through a SIM-dependent interaction with CA-bound CypA, Daxx increases their stability, thus preventing uncoating and reverse transcription. Our study uncovers a previously unknown function of Daxx in the early steps of HIV-1 infection and further illustrates how reverse transcription and uncoating are two tightly interdependent processes.


Subject(s)
Co-Repressor Proteins/metabolism , HIV Infections/metabolism , HIV-1/genetics , Molecular Chaperones/metabolism , SUMO-1 Protein/metabolism , Virus Uncoating , Amino Acid Motifs , Capsid/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Co-Repressor Proteins/chemistry , Co-Repressor Proteins/genetics , HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Reverse Transcription , SUMO-1 Protein/genetics , beta Karyopherins/genetics , beta Karyopherins/metabolism
13.
Virologie (Montrouge) ; 24(2): 88-98, 2020 04 01.
Article in French | MEDLINE | ID: mdl-32540830

ABSTRACT

The Human Immunodeficiency Virus Type-1, the causative agent of AIDS, reaches its site of replication by trafficking through the cytoplasm towards the nucleus, benefiting from an active nuclear import through the nuclear pore in order to integrate in the genome of the host cell. Although it is generally accepted that the viral genome remains within the viral capsid for some time after cell entry, the mechanisms responsible for controlled uncoating, which is essential for productive infection, remain poorly understood. Numerous studies now show that the integrity of the viral capsid is essential for transport towards the nucleus, for reverse transcription and nuclear import, and to prevent sensing by innate immune receptors. This review aims to report recent developments in our understanding of the early stages of HIV infection, from entry into the cell to integration, highlighting the cellular partners of the HIV-1 capsid that promote or antagonize infection, as well as the different techniques that are developed for fundamental research and the identification of potential therapeutic targets.

15.
Sci Adv ; 5(11): eaax3511, 2019 11.
Article in English | MEDLINE | ID: mdl-31799391

ABSTRACT

Plasmacytoid dendritic cells (pDCs) play a crucial role in antiviral innate immunity through their unique capacity to produce large amounts of type I interferons (IFNs) upon viral detection. Tripartite motif (TRIM) proteins have recently come forth as important modulators of innate signaling, but their involvement in pDCs has not been investigated. Here, we performed a rationally streamlined small interfering RNA (siRNA)-based screen of TRIM proteins in human primary pDCs to identify those that are critical for the IFN response. Among candidate hits, TRIM8 emerged as an essential regulator of IFN regulatory factor 7 (IRF7) function. Mechanistically, TRIM8 protects phosphorylated IRF7 (pIRF7) from proteasomal degradation in an E3 ubiquitin ligase-independent manner by preventing its recognition by the peptidyl-prolyl isomerase Pin1. Our findings uncover a previously unknown regulatory mechanism of type I IFN production in pDCs by which TRIM8 and Pin1 oppositely regulate the stability of pIRF7.


Subject(s)
Carrier Proteins/metabolism , Chikungunya virus/immunology , Dendritic Cells/immunology , HIV-1/immunology , Influenza A Virus, H3N2 Subtype/immunology , Interferon Type I/immunology , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Nerve Tissue Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Line , HEK293 Cells , Humans , Immunity, Innate/immunology , Interferon Regulatory Factor-7/metabolism , Nerve Tissue Proteins/genetics , Phosphorylation , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/immunology , Ubiquitin-Protein Ligases/metabolism , Zebrafish
16.
Nat Microbiol ; 4(11): 1840-1850, 2019 11.
Article in English | MEDLINE | ID: mdl-31611641

ABSTRACT

The initial steps of HIV replication in host cells prime the virus for passage through the nuclear pore and drive the establishment of a productive and irreparable infection1,2. The timely release of the viral genome from the capsid-referred to as uncoating-is emerging as a critical parameter for nuclear import, but the triggers and mechanisms that orchestrate these steps are unknown. Here, we identify ß-karyopherin Transportin-1 (TRN-1) as a cellular co-factor of HIV-1 infection, which binds to incoming capsids, triggers their uncoating and promotes viral nuclear import. Depletion of TRN-1, which we characterized by mass spectrometry, significantly reduced the early steps of HIV-1 infection in target cells, including primary CD4+ T cells. TRN-1 bound directly to capsid nanotubes and induced dramatic structural damage, indicating that TRN-1 is necessary and sufficient for uncoating in vitro. Glycine 89 on the capsid protein, which is positioned within a nuclear localization signal in the cyclophilin A-binding loop, is critical for engaging the hydrophobic pocket of TRN-1 at position W730. In addition, TRN-1 promotes the efficient nuclear import of both viral DNA and capsid protein. Our study suggests that TRN-1 mediates the timely release of the HIV-1 genome from the capsid protein shell and efficient viral nuclear import.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , HIV Infections/metabolism , HIV-1/physiology , beta Karyopherins/chemistry , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Binding Sites , CD4-Positive T-Lymphocytes/metabolism , Capsid/chemistry , Capsid/metabolism , Gene Deletion , HEK293 Cells , HIV Infections/genetics , HIV Infections/virology , HIV-1/metabolism , HeLa Cells , Humans , Mass Spectrometry , Models, Molecular , Nuclear Localization Signals , Protein Binding , Protein Conformation , RNA, Viral/metabolism , Virus Uncoating , beta Karyopherins/genetics
18.
Commun Biol ; 1: 193, 2018.
Article in English | MEDLINE | ID: mdl-30456314

ABSTRACT

TRIM5α is a cytoplasmic restriction factor that blocks post-entry retroviral infection. Evidence suggests that its antiviral activity can be regulated by SUMO, but how this is achieved remains unknown. Here, we show that TRIM5α forms a complex with RanGAP1, Ubc9, and RanBP2 at the nuclear pore, and that RanBP2 E3 SUMO ligase promotes the SUMOylation of endogenous TRIM5α in the cytoplasm. Loss of RanBP2 blocked SUMOylation of TRIM5α, altered its localization in primary cells, and suppressed the antiviral activity of both rhesus and human orthologs. In cells, human TRIM5α is modified on K84 within a predicted phosphorylated SUMOylation motif (pSUM) and not on K10 as found in vitro. Non-modified TRIM5α lacked antiviral activity, indicating that only SUMOylated TRIM5α acts as a restriction factor. This work illustrates the importance of the nuclear pore in intrinsic antiviral immunity, acting as a hub where virus, SUMO machinery, and restriction factors can meet.

19.
Cell Rep ; 14(2): 355-69, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26748714

ABSTRACT

During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated.


Subject(s)
Dendritic Cells/metabolism , Proteins/genetics , Animals , Humans , Macaca mulatta , Proteins/metabolism , Sumoylation , Ubiquitin-Protein Ligases
20.
PLoS Pathog ; 11(11): e1005280, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26566030

ABSTRACT

PML (Promyelocytic Leukemia protein), also known as TRIM19, belongs to the family of tripartite motif (TRIM) proteins. PML is mainly expressed in the nucleus, where it forms dynamic structures known as PML nuclear bodies that recruit many other proteins, such as Sp100 and Daxx. While the role of PML/TRIM19 in antiviral defense is well documented, its effect on HIV-1 infection remains unclear. Here we show that infection by HIV-1 and other retroviruses triggers the formation of PML cytoplasmic bodies, as early as 30 minutes post-infection. Quantification of the number and size of PML cytoplasmic bodies revealed that they last approximately 8 h, with a peak at 2 h post-infection. PML re-localization is blocked by reverse-transcription inhibitors and is not observed following infection with unrelated viruses, suggesting it is specifically triggered by retroviral reverse-transcription. Furthermore, we show that PML interferes with an early step of retroviral infection since PML knockdown dramatically increases reverse-transcription efficiency. We demonstrate that PML does not inhibit directly retroviral infection but acts through the stabilization of one of its well-characterized partners, Daxx. In the presence of PML, cytoplasmic Daxx is found in the vicinity of incoming HIV-1 capsids and inhibits reverse-transcription. Interestingly, Daxx not only interferes with exogenous retroviral infections but can also inhibit retrotransposition of endogenous retroviruses, thus identifying Daxx as a broad cellular inhibitor of reverse-transcription. Altogether, these findings unravel a novel antiviral function for PML and PML nuclear body-associated protein Daxx.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Cell Nucleus/metabolism , Co-Repressor Proteins , HIV-1/metabolism , Humans , Molecular Chaperones , Promyelocytic Leukemia Protein , Protein Binding/physiology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...