Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
2.
PLoS One ; 19(3): e0300375, 2024.
Article in English | MEDLINE | ID: mdl-38517860

ABSTRACT

The jaguar (Panthera onca) is a charismatic species considered Vulnerable in Colombia but yet largely unknown in the country. The species is mostly threatened by the continuous decline in its habitats, mostly derived from deforestation and habitat loss, additional to hunting and conflicts with humans. Thus, the future of jaguars in Colombia depends on protecting and recovering existing habitats. The aims of this study were to 1) evaluate jaguar distribution and identify the remnant patches of habitat in Colombia, 2) define an ecological connectivity network within the country, and 3) propose a priority areas portfolio for the conservation and recovery of jaguars. We used a presence background model for estimating species potential distribution and subsequently identified remaining habitat patches across the country based on land cover and species-specific ecological attributes. We then created an ecological connectivity network based on circuit theory and following a multi-criteria approach identified jaguar priority areas for conservation (JPCA) and recovery (JPRA). Jaguar potential distribution comprises 1103122.43 km2, from which 56.71% maintain suitable patches of potential habitat. We identified 960 corridors between remnant patches of natural or semi-natural vegetation. Based on the criteria, JPCAs with greater importance were identified in each of the five Colombian regions. JPRAs were located mainly towards the Andean and Caribbean regions. These JPCAs and JPRAs could serve as a guide for designing and implementing management strategies for the long-term conservation and recovery of the species in Colombia.


Subject(s)
Panthera , Animals , Humans , Colombia , Conservation of Natural Resources , Ecosystem , Caribbean Region
3.
J Med Entomol ; 61(2): 354-366, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38339867

ABSTRACT

Anthropogenic activities are altering ecosystem stability and climate worldwide, which is disturbing and shifting arbovirus vector distributions. Although the overall geographic range of some epidemiologically important species is recognized, the spatiotemporal variation for other species in the context of climate change remains poorly understood. Here we predict the current potential distribution of 9 species of Culex (Melanoconion) based on an ecological niche modeling (ENM) approach and assess spatiotemporal variation in future climate change in the Neotropics. The most important environmental predictors were the mean temperature of the warmest season (27 °C), precipitation during the driest month (50 mm), and precipitation during the warmest season (>200 mm). The best current model for each species was transferred to the future general circulation model IPSL-CM6A-LR, using 2 shared socioeconomic pathway scenarios (ssp1-2.6, ssp5-8.5). Under both scenarios of climatic change, an expansion of suitable areas can be observed followed by a strong reduction for the medium-long future under the worst scenario. The multivariate environmental similarity surface analysis indicated future novel climates outside the current range. However, none of the species would occur in those areas. Even if many challenges remain in improving methods for forecasting species responses to global climate change and arbovirus transmission, ENM has strong potential to be applied to the geographic characterization of these systems. Our study can be used for the monitoring of Culex (Melanoconion) species populations and their associated arboviruses, contributing to develop region-specific public health surveillance programs.


Subject(s)
Arboviruses , Culex , Culicidae , Animals , Ecosystem , Public Health , Mosquito Vectors , Arboviruses/physiology , Climate Change
4.
PLoS One ; 17(9): e0273750, 2022.
Article in English | MEDLINE | ID: mdl-36099258

ABSTRACT

Leopardus tigrinus is among the least known carnivore species in the Neotropics, including considerable taxonomic uncertainty. Here we model the distribution, connectivity and overlap with existing conservation areas for the species in Colombia. Using a Species Distribution Modeling approach, we estimated current potential range of the species in Colombia and identified potential habitat blocks remaining in the country. In addition, we designed a connectivity network across the available cores, using a circuit theory approach, to evaluate habitat linkage. Finally, we defined a prioritization scheme for the remaining habitat cores and assessed the level of coverage of protected areas for the country. L. tigrinus is potentially present across the three Andean branches of Colombia, with still considerable continuous habitat cores, mostly located on the eastern and central Andean ranges. Most habitat cores are theoretically connected, but nearly 15% are isolated. Priority areas were located across the eastern and central ranges, but with very significant and promising cores in the northern eastern and western ranges. Current level of protection indicates nearly 30% of the range is "protected", but only about 25% is under national strict protected areas. Evolution of this coverage showed some periods of significant increase but interestingly the number of cores grew at a faster rate than overall proportion protected, likely indicating numerous discontinuous fragments, and not contiguous functional landscapes. This represents the most updated assessment of the distribution and conservation status for the species in Colombia, and indicates the numerous conservation opportunities, especially in most populated areas of the country. We found unique business environmental passive's opportunities, including compensation and development potential, which are becoming more available in the country.


Subject(s)
Carnivora , Tigers , Animals , Colombia , Conservation of Natural Resources , Ecosystem
5.
R Soc Open Sci ; 9(1): 201154, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35242340

ABSTRACT

Protected areas (PAs) constitute one of the main tools for global landscape conservation. Recently, payments for environmental services (PES) have attracted interest from national and regional governments and are becoming one of the leading conservation policy instruments in tropical countries. However, the degree to which areas designated for PES overlap with areas that are critical for maintaining species' landscape connectivity is rarely evaluated. We estimated habitat distributions and connectivity for 16 of the 22 mammalian carnivores occurring in the Caribbean region of Colombia, and identified the overlap between existing PAs and areas identified as being important for connectivity for these species. We also evaluated the potential impact of creation of new PAs versus new PES areas on conserving connectivity for carnivores. Our results show that PAs cover only a minor percentage of the total area that is important for maintaining connectivity ( x = 26.8 % ± 20.2 s . d . ). On the other hand, PES, if implemented extensively, could contribute substantially to mammalian carnivores' connectivity ( x = 45.4 % ± 12.8 s . d . ). However, in a more realistic scenario with limited conservation investment in which fewer areas are set aside, a strategy based on implementing new PAs seems superior to PES. We argue that prioritizing designation of new PAs will be the most efficient means through which to maintain connectivity.

6.
PLoS One ; 16(10): e0255555, 2021.
Article in English | MEDLINE | ID: mdl-34613994

ABSTRACT

The jaguar (Panthera onca) is one of the most threatened carnivores in the Americas. Despite a long history of research on this charismatic species, to date there have been few systematic efforts to assess its population size and status in most countries across its distribution range. We present here the results of the two National Jaguar Surveys for Mexico, the first national censuses in any country within the species distribution. We estimated jaguar densities from field data collected at 13 localities in 2008-2010 (2010 hereafter) and 11 localities in 2016-2018 (2018 hereafter). We used the 2010 census results as the basis to develop a National Jaguar Conservation Strategy that identified critical issues for jaguar conservation in Mexico. We worked with the Mexican government to implement the conservation strategy and then evaluated its effectivity. To compare the 2010 and 2018 results, we estimated the amount of jaguar-suitable habitat in the entire country based on an ecological niche model for both periods. Suitable jaguar habitat covered ~267,063 km2 (13.9% of the country's territory) in 2010 and ~ 288,890 km2 (~14.8% of the country's territory) in 2018. Using the most conservative density values for each priority region, we estimated jaguar densities for both the high and low suitable habitats. The total jaguar population was estimated in ~4,000 individuals for 2010 census and ~4,800 for the 2018 census. The Yucatan Peninsula was the region with the largest population, around 2000 jaguars, in both censuses. Our promising results indicate that the actions we proposed in the National Jaguar Conservation Strategy, some of which have been implemented working together with the Federal Government, other NGO's, and land owners, are improving jaguar conservation in Mexico. The continuation of surveys and monitoring programs of the jaguar populations in Mexico will provide accurate information to design and implement effective, science-based conservation measures to try to ensure that robust jaguar populations remain a permanent fixture of Mexico's natural heritage.


Subject(s)
Conservation of Natural Resources/legislation & jurisprudence , Panthera/physiology , Public Policy/legislation & jurisprudence , Animals , Ecosystem , Mexico , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL