Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 258: 119413, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876422

ABSTRACT

Frequent detection of terbutaline in wastewater highlights its potential risks to human health associated in the environment. Exposure to terbutaline through contaminated water sources or food chain have adverse effects to human health. This work emphasized on the removal of terbutaline from wastewater using adsorption technology. Mechanochemically synthesized [Cu(INA)2] metal-organic frameworks (MOFs) and its magnetic composite ([Cu(INA)2]-MOF@Fe3O4) are designed with higher specific surface areas and tailored features to accommodate the molecular size and structure of terbutaline. Thus, batch experiment has been conducted using the [Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 for the terbutaline adsorption. The adsorption efficiency achieved by the MOFs was 91.8% and 99.3% for the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 respectively. The optimum for the adsorption study included terbutaline concentration of 40 mg/L, adsorbent dose of 5 mg/L, pH of 11, temperature of 25 °C and equilibrium time of 40 min. The kinetics and isotherms have been described by pseudo-second order and Langmuir models, while the thermodynamics revealed the exothermic and spontaneous nature of the process. The promising performance of the MOFs is manifested on the ease of regeneration and reusability, achieving adsorption efficiency of 85.0% and 94.7% by the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4, respectively at five consecutive cycles. The higher performance of the MOFs demonstrates their excellent potentialities for the terbutaline adsorption from the aqueous solution.

2.
Environ Sci Pollut Res Int ; 28(37): 52247-52257, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34002317

ABSTRACT

Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.


Subject(s)
Biofouling , Disinfectants , Water Pollutants, Chemical , Biofouling/prevention & control , Diuron/analysis , Ecosystem , Malaysia , Paint , Risk Assessment , Seasons , Triazines , Water Pollutants, Chemical/analysis
3.
Data Brief ; 27: 104806, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31788520

ABSTRACT

Metals are natural elements existed in the environment. However, due to the rapid development of urbanisation and economic, high content of anthropogenic metals are being perceived in polluting the environment. The oceans are known to be a part of the sinking basin for anthropogenic metals ends. Dataset provided is purposely to give an overview of dissolved metals spatial distribution in the South China Sea off the east Peninsular of Malaysia during the pre-, post- and Northeast (NE) Monsoon period. Seawater samples were collected in a grid of 18 stations at 3 different water depth. Dissolved metals were pre-concentrated on-board ship using Chelex-100 resin and analysed using Inductively Coupled Plasma Mass Spectrophotometry (ICPMS). The dataset shows the effect of NE Monsoon on dissolved metals spatial distribution mainly at the area closer to the land. Therefore, this dataset could reveal the past information on anthropogenic metals intrusion in the South China Sea, since Terengganu state was recently pointed to be one of the Malaysian waterfront city. Additionally, this dataset also could help in studying the cycle of metals in the southern South China Sea waters.

SELECTION OF CITATIONS
SEARCH DETAIL
...