Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Rep ; 12(2): 272-85, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26146084

ABSTRACT

Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed.


Subject(s)
Claudins/genetics , GTPase-Activating Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Stomach Neoplasms/pathology , Amino Acid Sequence , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Clathrin/pharmacology , Claudins/metabolism , Dogs , Endocytosis/drug effects , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , GTPase-Activating Proteins/metabolism , HeLa Cells , Humans , MCF-7 Cells , Madin Darby Canine Kidney Cells , Molecular Sequence Data , Oncogene Proteins, Fusion/genetics , Phenotype , Stomach Neoplasms/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors , rhoA GTP-Binding Protein/metabolism
2.
PLoS One ; 9(6): e90852, 2014.
Article in English | MEDLINE | ID: mdl-24603971

ABSTRACT

Delineating candidate genes at the chromosomal breakpoint regions in the apparently balanced chromosome rearrangements (ABCR) has been shown to be more effective with the emergence of next-generation sequencing (NGS) technologies. We employed a large-insert (7-11 kb) paired-end tag sequencing technology (DNA-PET) to systematically analyze genome of four patients harbouring cytogenetically defined ABCR with neurodevelopmental symptoms, including developmental delay (DD) and speech disorders. We characterized structural variants (SVs) specific to each individual, including those matching the chromosomal breakpoints. Refinement of these regions by Sanger sequencing resulted in the identification of five disrupted genes in three individuals: guanine nucleotide binding protein, q polypeptide (GNAQ), RNA-binding protein, fox-1 homolog (RBFOX3), unc-5 homolog D (C.elegans) (UNC5D), transmembrane protein 47 (TMEM47), and X-linked inhibitor of apoptosis (XIAP). Among them, XIAP is the causative gene for the immunodeficiency phenotype seen in the patient. The remaining genes displayed specific expression in the fetal brain and have known biologically relevant functions in brain development, suggesting putative candidate genes for neurodevelopmental phenotypes. This study demonstrates the application of NGS technologies in mapping individual gene disruptions in ABCR as a resource for deciphering candidate genes in human neurodevelopmental disorders (NDDs).


Subject(s)
Chromosome Breakpoints , Developmental Disabilities/genetics , Language Development Disorders/genetics , Base Sequence , Chromosome Inversion , DNA Copy Number Variations , Female , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Molecular Sequence Data , Pedigree , Sequence Analysis, DNA , Translocation, Genetic
3.
Genome Biol ; 13(12): R115, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23237666

ABSTRACT

BACKGROUND: Gastric cancer is the second highest cause of global cancer mortality. To explore the complete repertoire of somatic alterations in gastric cancer, we combined massively parallel short read and DNA paired-end tag sequencing to present the first whole-genome analysis of two gastric adenocarcinomas, one with chromosomal instability and the other with microsatellite instability. RESULTS: Integrative analysis and de novo assemblies revealed the architecture of a wild-type KRAS amplification, a common driver event in gastric cancer. We discovered three distinct mutational signatures in gastric cancer--against a genome-wide backdrop of oxidative and microsatellite instability-related mutational signatures, we identified the first exome-specific mutational signature. Further characterization of the impact of these signatures by combining sequencing data from 40 complete gastric cancer exomes and targeted screening of an additional 94 independent gastric tumors uncovered ACVR2A, RPL22 and LMAN1 as recurrently mutated genes in microsatellite instability-positive gastric cancer and PAPPA as a recurrently mutated gene in TP53 wild-type gastric cancer. CONCLUSIONS: These results highlight how whole-genome cancer sequencing can uncover information relevant to tissue-specific carcinogenesis that would otherwise be missed from exome-sequencing data.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Stomach Neoplasms/genetics , Adenocarcinoma/genetics , Chromosomal Instability , Deamination , Exome , Genomics , Microsatellite Instability , Mutation , Reactive Oxygen Species/metabolism
4.
PLoS One ; 7(9): e46152, 2012.
Article in English | MEDLINE | ID: mdl-23029419

ABSTRACT

Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10-20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.


Subject(s)
Genome, Human , Genomic Structural Variation , Mutation , Neoplasms/genetics , Open Reading Frames , Sequence Analysis, DNA/methods , Algorithms , Cell Line, Tumor , Chromosome Mapping , DNA Copy Number Variations , Genomic Library , Humans , Mutagenesis, Insertional
5.
Nat Genet ; 44(7): 765-9, 2012 May 27.
Article in English | MEDLINE | ID: mdl-22634754

ABSTRACT

To survey hepatitis B virus (HBV) integration in liver cancer genomes, we conducted massively parallel sequencing of 81 HBV-positive and 7 HBV-negative hepatocellular carcinomas (HCCs) and adjacent normal tissues. We found that HBV integration is observed more frequently in the tumors (86.4%) than in adjacent liver tissues (30.7%). Copy-number variations (CNVs) were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced. Approximately 40% of HBV breakpoints within the HBV genome were located within a 1,800-bp region where the viral enhancer, X gene and core gene are located. We also identified recurrent HBV integration events (in ≥ 4 HCCs) that were validated by RNA sequencing (RNA-seq) and Sanger sequencing at the known and putative cancer-related TERT, MLL4 and CCNE1 genes, which showed upregulated gene expression in tumor versus normal tissue. We also report evidence that suggests that the number of HBV integrations is associated with patient survival.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Hepatitis B virus/genetics , Liver Neoplasms/genetics , Liver Neoplasms/virology , Virus Integration/genetics , Base Sequence , Chromosomal Instability/genetics , Cyclin E/genetics , DNA Copy Number Variations/genetics , DNA, Viral/genetics , DNA-Binding Proteins/genetics , Female , Histone-Lysine N-Methyltransferase , Humans , Male , Middle Aged , Molecular Sequence Data , Oncogene Proteins/genetics , RNA, Viral/genetics , Survival Rate , Telomerase/genetics
6.
Nat Med ; 18(4): 521-8, 2012 Mar 18.
Article in English | MEDLINE | ID: mdl-22426421

ABSTRACT

Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of personalizing therapy with BH3 mimetics to overcome BIM-polymorphism-associated TKI resistance.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Lung Neoplasms/genetics , Membrane Proteins/genetics , Polymorphism, Genetic/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Sequence Deletion/genetics , Adult , Aged , Aged, 80 and over , Annexins/metabolism , BH3 Interacting Domain Death Agonist Protein/genetics , Bcl-2-Like Protein 11 , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cohort Studies , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Enzyme-Linked Immunosorbent Assay/methods , ErbB Receptors/genetics , Exons/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic/drug effects , Gene Frequency , Genotype , Humans , International Cooperation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Lung Neoplasms/drug therapy , Male , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/metabolism , Statistics, Nonparametric , Transfection
7.
Genome Res ; 21(5): 665-75, 2011 May.
Article in English | MEDLINE | ID: mdl-21467267

ABSTRACT

Somatic genome rearrangements are thought to play important roles in cancer development. We optimized a long-span paired-end-tag (PET) sequencing approach using 10-Kb genomic DNA inserts to study human genome structural variations (SVs). The use of a 10-Kb insert size allows the identification of breakpoints within repetitive or homology-containing regions of a few kilobases in size and results in a higher physical coverage compared with small insert libraries with the same sequencing effort. We have applied this approach to comprehensively characterize the SVs of 15 cancer and two noncancer genomes and used a filtering approach to strongly enrich for somatic SVs in the cancer genomes. Our analyses revealed that most inversions, deletions, and insertions are germ-line SVs, whereas tandem duplications, unpaired inversions, interchromosomal translocations, and complex rearrangements are over-represented among somatic rearrangements in cancer genomes. We demonstrate that the quantitative and connective nature of DNA-PET data is precise in delineating the genealogy of complex rearrangement events, we observe signatures that are compatible with breakage-fusion-bridge cycles, and we discover that large duplications are among the initial rearrangements that trigger genome instability for extensive amplification in epithelial cancers.


Subject(s)
Base Pairing/genetics , Breast Neoplasms/genetics , Chromosome Mapping/methods , Genome, Human/genetics , Genomic Structural Variation/genetics , Stomach Neoplasms/genetics , Cell Line, Tumor , Computational Biology , DNA/genetics , Female , Gene Rearrangement , Humans , Sequence Analysis, DNA
8.
Nature ; 462(7269): 58-64, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19890323

ABSTRACT

Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor alpha (ER-alpha) in the human genome. We found that most high-confidence remote ER-alpha-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-alpha functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Estrogen Receptor alpha/metabolism , Genome, Human/genetics , Binding Sites , Cell Line , Chromatin Immunoprecipitation , Cross-Linking Reagents , Formaldehyde , Humans , Promoter Regions, Genetic/genetics , Protein Binding , Reproducibility of Results , Sequence Analysis, DNA , Transcription, Genetic , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL