Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 21(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37233484

ABSTRACT

Aquaculture production is at a record level and is estimated to increase in the coming years. However, this production can be negatively affected by infectious diseases produced by viruses, bacteria, and parasites, causing fish mortality and economic losses. Antimicrobial peptides (AMPs) are small peptides that may be promising candidates to replace antibiotics because they are the first line of defense in animals against a wide variety of pathogens and have no negative effects; they also show additional activities such as antioxidant or immunoregulatory functions, which makes them powerful alternatives for use in aquaculture. Moreover, AMPs are highly available in natural sources and have already been used in the livestock farming and food industries. Photosynthetic marine organisms can survive under all kinds of environmental conditions and under extremely competitive environments thanks to their flexible metabolism. For this reason, these organisms represent a powerful source of bioactive molecules as nutraceuticals and pharmaceuticals, including AMPs. Therefore, in this study we reviewed the present knowledge about AMPs from photosynthetic marine organism sources and analyzed whether they could be suitable for use in aquaculture.


Subject(s)
Antimicrobial Cationic Peptides , Aquatic Organisms , Animals , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Aquaculture , Anti-Bacterial Agents
2.
Animals (Basel) ; 13(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36766303

ABSTRACT

Acquiring immunocompetence is essential in the development of fish embryos, as they are exposed to environmental pathogens even before they are fertilized. Despite the importance of the antimicrobial function as the first line of defense against foreign microorganisms, little knowledge is available about its role in larval development. In vertebrates, transgenerational immune priming influences the acquisition of immunocompetence of specimens, regulating the selective allocation of nongenetic resources to their progeny and modulating their development. In this work, we primed teleost European sea bass broodstock females with a viral protein expression vector in order to evaluate the innate immunity development of their offspring. Several antimicrobial functions, the pattern of expression of gene coding for different antimicrobial peptides (AMPs), and their protein levels, were evaluated in eggs and larvae during development. Our data determined the presence of antimicrobial proteins of maternal origin in eggs, and that female vaccination increases antimicrobial activities and the transcription and synthesis of AMPs during larval development.

3.
Animals (Basel) ; 13(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36766372

ABSTRACT

Currently, microalgae are used in fish diets, but their long-term growth effect is unknown. In this experiment, juvenile seabream specimens were fed with microalgae-enriched diets for three months, and then transferred to a microalgae-free diet for 10 months to assess long-term effects up to commercial size (≈27 cm and ≈300 g). The juvenile diets contained Nannochloropsis gaditana at 2.5 or 5% inclusion levels, either raw (R2.5 and R5 groups) or cellulose-hydrolyzed (H2.5 and H5 groups). The body length and weight were measured in 75 fish group-1 at commercial stage. The size, number, and fibrillar density of white muscle fibers and the white muscle transverse area were measured in nine fish group-1 at commercial stage. The results showed the highest body weight in H5 at commercial stage. The white muscle transverse area and the white fibres hyperplasia and density also showed the highest values in H5, followed by H2.5. In contrast, the highest hypertrophy was observed in C and R2.5, being associated with the lowest muscle growth in both groups. These results showed a microalgae concentration-dependent effect in hydrolyzed diets as well as an advantageous effect of the hydrolyzed versus raw diets on the long-term growth of Sparus aurata.

4.
Dev Comp Immunol ; 136: 104498, 2022 11.
Article in English | MEDLINE | ID: mdl-35948178

ABSTRACT

Prostaglandins (PGs) are highly reactive small lipophilic molecules derived from polyunsaturated fatty acids of the cell membrane and play a key role in the resolution of inflammation processes. 15-deoxy-Δ12,14-PGJ2 (15dPGJ2) is a cyclopentenone PG (CyPG) of the J series with anti-inflammatory, anti-proliferative and pro-apoptotic effects. This CyPG can signal through: (i) the PGD2 receptor (DP2) and peroxisome proliferator-activated receptor γ (PPARγ) or (ii) by covalent binding to protein nucleophiles, such as, thiols groups of cysteine, lysine or histidine via a Michael addition reaction, modifying its structure and function. In this work we show that acidophilic granulocytes (AGs) of gilthead seabream (Sparus aurata L.), the functional equivalent to mammalian neutrophils, constitutively expressed ppara, pparb and pparg genes, the latter showing the highest expression and up-regulation when stimulated by bacterial DNA. In addition, we tested the ability of 15dPGJ2, and its biotinylated analog, as well as several PPARγ ligands, to modulate reactive oxygen species (ROS) and/or cytokines production during a Toll like receptor (TLR)-mediated granulocyte response. Thus, 15dPGJ2 was able to significantly decrease bacterial DNA-induced ROS production and transcript levels of pparg, interleukin-1ß (il1b) and prostaglandin-endoperoxide synthase 2 (ptgs2). In contrast, its biotinylated analog was less potent and a higher dose was required to elicit the same effects on ROS production and cytokine expression. In addition, different PPARγ agonists were able to mimic the effects of 15dPGJ2. Conversely, the PPARγ antagonist T007097 abolished the effect of 15dPGJ2 on DNA bacterial-induced ROS production. Surprisingly, transactivation assays revealed that both 15dPGJ2 and its biotinylated analog signaled via Pparα and Pparß, but not by Pparγ. These results were further confirmed by HPLC/MS analysis, where Pparß was identified as an interactor of biotin-15dPGJ2 in naïve and DNA-stimulated leukocytes. Taken together, our data show that 15dPGJ2 acts both through Ppar activation and covalent binding to proteins in fish granulocytes and identify for the first time in vertebrates a role for Pparα and Pparß in the resolution of inflammation mediated by 15dPGJ2.


Subject(s)
PPAR-beta , Sea Bream , Animals , Cyclooxygenase 2/metabolism , Cyclopentanes , DNA, Bacterial , Granulocytes/metabolism , Inflammation , Mammals , PPAR alpha , PPAR gamma/genetics , PPAR gamma/metabolism , Prostaglandin D2/chemistry , Prostaglandin D2/pharmacology , Prostaglandins , Reactive Oxygen Species , Sea Bream/metabolism
5.
Int J Mol Sci ; 23(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35563482

ABSTRACT

Historically, gilthead seabream (Sparus aurata) has been considered a fish species resistant to nervous necrosis virus (NNV) disease. Nevertheless, mortality in seabream hatcheries, associated with typical clinical signs of the viral encephalopathy and retinopathy (VER) disease has been confirmed to be caused by RGNNV/SJNNV reassortants. Because of this, seabream larvae at 37 and 86 days post-hatching (dph) were infected by immersion with RGNNV/SJNNV and SJNNV/RGNNV reassortants under laboratory conditions, and mortality, viral replication and immunity were evaluated. Our results show that gilthead seabream larvae, mainly those at 37 dph, are susceptible to infection with both NNV reassortant genotypes, with the highest impact from the RGNNV/SJNNV reassortant. In addition, viral replication occurs at both ages (37 and 86 dph) but the recovery of infective particles was only confirmed in 37 dph larvae,; this value was also highest with the RGNNV/SJNNV reassortant. Larvae immunity, including the expression of antiviral, inflammatory and cell-mediated cytotoxicity genes, was affected by NNV infection. Levels of the natural killer lysin (Nkl) peptide were increased in SJNNV/RGNNV-infected larvae of 37 dph, though hepcidin was not. Our results demonstrate that the seabream larvae are susceptible to both NNV reassortants, though mainly to RGNNV/SJNNV, in an age-dependent manner.


Subject(s)
Fish Diseases , Nodaviridae , RNA Virus Infections , Sea Bream , Virus Diseases , Animals , Disease Susceptibility , Immunity, Innate , Larva , Nodaviridae/physiology
6.
Viruses ; 14(2)2022 02 06.
Article in English | MEDLINE | ID: mdl-35215924

ABSTRACT

The production of the aquaculture industry has increased to be equal to that of the world fisheries in recent years. However, aquaculture production faces threats such as infectious diseases. Betanodaviruses induce a neurological disease that affects fish species worldwide and is caused by nervous necrosis virus (NNV). NNV has a nude capsid protecting a bipartite RNA genome that consists of molecules RNA1 and RNA2. Four NNV strains distributed worldwide are discriminated according to sequence homology of the capsid protein encoded by RNA2. Since its first description over 30 years ago, the virus has expanded and reassortant strains have appeared. Preventive treatments prioritize the RGNNV (red-spotted grouper nervous necrosis virus) strain that has the highest optimum temperature for replication and the broadest range of susceptible species. There is strong concern about the spreading of NNV in the mariculture industry through contaminated diet. To surveil natural reservoirs of NNV in the western Mediterranean Sea, we collected invertebrate species in 2015 in the Alboran Sea. We report the detection of the RGNNV strain in two species of cephalopod mollusks (Alloteuthis media and Abralia veranyi), and in one decapod crustacean (Plesionika heterocarpus). According to RNA2 sequences obtained from invertebrate species and reported to date in the Mediterranean Sea, the strain RGNNV is predominant in this semienclosed sea. Neither an ecosystem- nor host-driven distribution of RGNNV were observed in the Mediterranean basin.


Subject(s)
Decapodiformes/virology , Disease Reservoirs/veterinary , Nodaviridae/isolation & purification , Pandalidae/virology , Animals , Disease Reservoirs/virology , Fishes/classification , Fishes/virology , Genome, Viral/genetics , Mediterranean Sea , Nodaviridae/classification , Nodaviridae/genetics , Phylogeny , RNA, Viral/genetics , Shellfish/classification , Shellfish/virology
7.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055122

ABSTRACT

The protozoan parasite Cryptocaryon irritans causes marine white spot disease in a wide range of fish hosts, including gilthead seabream, a very sensitive species with great economic importance in the Mediterranean area. Thus, we aimed to evaluate the immunity of gilthead seabream after a severe natural outbreak of C. irritans. Morphological alterations and immune cell appearance in the gills were studied by light microscopy and immunohistochemical staining. The expression of several immune-related genes in the gills and head kidney were studied by qPCR, including inflammatory and immune cell markers, antimicrobial peptides (AMP), and cell-mediated cytotoxicity (CMC) molecules. Serum humoral innate immune activities were also assayed. Fish mortality reached 100% 8 days after the appearance of the C. irritans episode. Gill filaments were engrossed and packed without any space between filaments and included parasites and large numbers of undifferentiated and immune cells, namely acidophilic granulocytes. Our data suggest leukocyte mobilization from the head kidney, while the gills show the up-regulated transcription of inflammatory, AMPs, and CMC-related molecules. Meanwhile, only serum bactericidal activity was increased upon infection. A potent local innate immune response in the gills, probably orchestrated by AMPs and CMC, is triggered by a severe natural outbreak of C. irritans.


Subject(s)
Ciliophora Infections/veterinary , Ciliophora/immunology , Immunity, Innate , Sea Bream/growth & development , Animals , Ciliophora/pathogenicity , Ciliophora Infections/genetics , Ciliophora Infections/immunology , Disease Outbreaks , Fish Diseases/genetics , Fish Diseases/immunology , Fish Diseases/parasitology , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Gills/immunology , Gills/parasitology , Immunohistochemistry , Microscopy , Sea Bream/genetics , Sea Bream/immunology , Sea Bream/parasitology
8.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884924

ABSTRACT

Endocrine-disrupting chemicals include natural and synthetic estrogens, such as 17α-ethynilestradiol (EE2), which can affect reproduction, growth and immunity. Estrogen signalling is mediated by nuclear or membrane estrogen receptors, such as the new G-protein-coupled estrogen receptor 1 (GPER1). The present work studies the effect of EE2 and G1 (an agonist of GPER1) on body and muscle parameters and growth-related genes of 54 two-year-old seabreams. The fish were fed a diet containing EE2 (EE2 group) and G1 (G1 group) for 45 days and then a diet without EE2 or G1 for 122 days. An untreated control group was also studied. At 45 days, the shortest body length was observed in the G1 group, while 79 and 122 days after the cessation of treatments, the shortest body growth was observed in the EE2 group. Hypertrophy of white fibers was higher in the EE2 and G1 groups than it was in the control group, whereas the opposite was the case with respect to hyperplasia. Textural hardness showed a negative correlation with the size of white fibers. At the end of the experiment, all fish analyzed in the EE2 group showed a predominance of the gonadal ovarian area. In addition, the highest expression of the mafbx gene (upregulated in catabolic signals) and mstn2 (myogenesis negative regulator) was found in EE2-exposed fish.


Subject(s)
Ethinyl Estradiol/pharmacology , Fish Proteins/genetics , Muscle, Skeletal/drug effects , Sea Bream/physiology , Animals , Aquaculture , Fish Proteins/agonists , Gene Expression/drug effects , Male , Muscle, Skeletal/physiology , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Sea Bream/genetics , Sea Bream/growth & development , Testis/drug effects
9.
Animals (Basel) ; 11(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34679910

ABSTRACT

The gilthead seabream is one of the most valuable species in the Mediterranean basin both for fisheries and aquaculture. Marine fish, such as gilthead seabream, are a source of n3 polyunsaturated fatty acids, highly appreciated for human food owing to their benefits on the cardiovascular and immune systems. The aim of the present study was to estimate heritability for fatty acid (FA) profile in fillet gilthead seabream to be considered as a strategy of a selective breeding program. Total of 399 fish, from a broodstock Mediterranean Sea, were analysed for growth, flesh composition and FA profile. Heritabilities for growth traits, and flesh composition (fat, protein, and moisture content) were medium. Heritability was moderate for 14:0, 16:0 and 18:1n9 and for sum of monounsaturated FA and n6/n3 ratio, and it was low for 20:1n11 and 22:6n3 and the ratio unsaturated/saturated FA. Breeding programs in gilthead seabream usually include growth as the first criterion in the selection process of the fish. However, other quality traits, such as fillet fat content and its fatty acids profile should be considered, since they are very important traits for the consumer, from a nutritional point of view and the benefits for the health.

10.
Dev Comp Immunol ; 114: 103803, 2021 01.
Article in English | MEDLINE | ID: mdl-32738336

ABSTRACT

Prostaglandin E2 (PGE2) plays an important role in immune activities in teleost fish, including seabream. However, receptors involved in PGE2 signaling, as well as the pathways activated downstream, are largely unknown. In this study, one ortholog of mammalian PTGER1, PTGER3 and PTGER4, and two of PTGER2 (Ptger2a and Ptger2b) were identified and characterized in gilthead seabream. In silico analysis showed that all these receptors possessed the organization domain of G protein-coupled receptors, with the exception of Ptger2b. The corresponding in vivo studies revealed that they were expressed in all the tissues examined, the highest mRNA levels of ptger1 and ptger3 being observed in the spleen and of ptger2a and ptger4 in the blood. Bacterial infection induced higher mRNA levels of ptger2a, ptger3 and ptger4 in peritoneal exudate (the site of bacterial injection). In addition, head kidney acidophilic granulocytes and macrophages displayed different ptger1, ptger2a, ptger3 and ptger4 expression profiles. Furthermore, in macrophages the expression of the receptors was weakly affected by stimulation with bacterial DNA or with PGE2, while in acidophilic granulocytes stimulation resulted in the upregulation of ptger2a and ptger4. Taken together, these results suggest different roles for seabream PGE2 receptors in the regulation of the immune responses.


Subject(s)
Fish Proteins/genetics , Neutrophils/immunology , Receptors, Prostaglandin/genetics , Sea Bream/immunology , Spleen/metabolism , Vibrio/physiology , Animals , Cloning, Molecular , Dinoprostone/metabolism , Fish Proteins/metabolism , Immunity, Innate , Mammals , Phylogeny , Protein Domains/genetics , Receptors, Prostaglandin/metabolism , Transcriptome , Up-Regulation , Vibrio Infections/immunology
11.
Animals (Basel) ; 10(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271995

ABSTRACT

A 90-d feeding trial was conducted in which five groups of gilthead seabream (11.96 g initial body weight) were fed with a microalgae-free diet (control group, C) or four diets containing the microalgae Nannochloropsis gaditana at two inclusion levels (2.5% or 5%), either raw (R2.5 and R5 batches) or cellulose-hydrolyzed (H2.5 and H5 batches), to study their effect on the body and muscle growth. At 40 days, the highest values of body length and weight were reached in R5 group, but at 64 and 90 days, these were reached in R2.5. However, feed conversion rate, specific growth, daily intake, and survival (100%) were similar in all the groups. The acquisition of a discoid body shape was accelerated depending on the inclusion level of N. gaditana in the diets. Moreover, H5 diet affected the fish geometric morphology compared to R5 diet. The white muscle transverse area was similar in all groups at 40 days, with the exception of H2.5 group, which showed the lowest area. At day 90, C and R2.5 displayed the highest muscle growth, attributable to increased hyperplasia in C, and higher hypertrophy in R2.5. However, the highest proportion of small and medium fibers was observed in R5 and H5.

12.
Sci Rep ; 10(1): 20067, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208754

ABSTRACT

Exposure to 17α-ethynylestradiol (EE2, 5 µg/g food) impairs some reproductive events in the protandrous gilthead seabream and a short recovery period does not allow full recovery. In this study, spermiating seabream males in the second reproductive cycle (RC) were fed a diet containing 5 or 2.5 µg EE2/g food for 28 days and then a commercial diet without EE2 for the remaining RC. Individuals were sampled at the end of the EE2 treatment and then at the end of the RC and at the beginning of the third RC, 146 and 333 days after the cessation of treatment, respectively. Increased hepatic transcript levels of the gene coding for vitellogenin (vtg) and plasma levels of Vtg indicated both concentrations of EE2 caused endocrine disruption. Modifications in the histological organization of the testis, germ cell proliferation, plasma levels of the sex steroids and pituitary expression levels of the genes coding for the gonadotropin ß-subunits, fshß and lhß were detected. The plasma levels of Vtg and most of the reproductive parameters were restored 146 days after treatments. However, although 50% of the control fish underwent sex reversal as expected at the third RC, male-to female sex change was prevented by both EE2 concentrations.


Subject(s)
Ethinyl Estradiol/pharmacology , Fish Proteins/metabolism , Gene Expression Regulation , Reproduction , Spermatogenesis , Transsexualism/prevention & control , Vitellogenins/metabolism , Animals , Estrogens/pharmacology , Female , Fish Proteins/genetics , Liver/drug effects , Male , Sea Bream , Testis/drug effects , Transsexualism/genetics , Vitellogenins/genetics
13.
Sci Rep ; 10(1): 7966, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409650

ABSTRACT

17α-ethynilestradiol (EE2) and tamoxifen (Tmx) are pollutants world-wide distributed in aquatic environments. Gilthead seabream, Sparus aurata L., is highlighted as a species model of intensively culture in anthropogenic disturbed environments. The effects of these pollutants on gilthead seabream reproduction and some immune responses have been described but, the humoral innate antimicrobial activities have never received attention. In this work we analysed the latest in the plasma of gilthead seabream males of different ages and reproductive stages treated with 0, 2.5, 5 or 50 µg EE2 or 100 µg Tmx g-1 food during different times of exposure and of reverting to commercial diet (recovery). The peroxidase and protease activities decreased as the spermatogenesis of the first reproductive cycle (RC) proceeded in control fish. However, only protease and antiprotease activities showed different level at different stages of the second RC in control fish, but showed scarce disruption in fish treated with EE2 or Tmx. Peroxidase and bactericide activities are more sensitive to EE2, than to Tmx. The effects induced by EE2 varied depending on the activity analyzed, the dose and the time of exposure and the reproductive stage and the age of the specimens.


Subject(s)
Disease Resistance/drug effects , Endocrine Disruptors/adverse effects , Environmental Exposure/adverse effects , Immunity, Humoral/drug effects , Sea Bream/physiology , Animals , Fish Diseases/etiology , Fish Diseases/immunology , Fish Diseases/microbiology , Male , Oxidation-Reduction , Reproduction/drug effects , Sex Factors , Spermatogenesis/drug effects , Time Factors
14.
Dev Comp Immunol ; 103: 103516, 2020 02.
Article in English | MEDLINE | ID: mdl-31593708

ABSTRACT

Antimicrobial peptides (AMPs) are considered to be amongst the most powerful tools for the fight against pathogens in fish, since they form part of the innate immune response, which is especially vital in eggs and early larval stages, when the immune system is developing. The fish responsible for a large part of the profits in Mediterranean aquaculture is European sea bass (Dicentrarchus labrax), a species greatly susceptible to nodavirus (NNV), especially in the larval and juvenile stages. In this work, polyclonal antibodies were developed and used to detect and quantify NK-lysin, dicentracin and hepcidin AMPs in European sea bass eggs and during larval development, as well as to evaluate their regulation in juvenile specimens upon NNV infection. Basal and detectable levels of all the AMPs studied were present in eggs, confirming the maternal transfer of peptides, which increased in one or two waves during larval development up to 69 days post-fertilization. After NNV infection, the mRNA of all the AMPs analysed was up-regulated five days after infection in most of the tissues, whilst peptide quantification of all three AMPs decreased in the brain, the target tissue for NNV, but increased in the head-kidney 5 days after infection. Further research should be carried out to ascertain the role of AMPs in fish innate immunity and to understand how NNV evades the immune response to be disseminated.


Subject(s)
Bass/immunology , Fish Diseases/immunology , Fish Proteins/immunology , Hepcidins/immunology , Proteolipids/immunology , RNA Virus Infections/veterinary , Animals , Antimicrobial Cationic Peptides/immunology , Bass/virology , Immunity, Innate/immunology , Nodaviridae , RNA Virus Infections/immunology
15.
Dev Comp Immunol ; 86: 171-179, 2018 09.
Article in English | MEDLINE | ID: mdl-29758230

ABSTRACT

Developing viral vaccines through the ultraviolet (UV) inactivation of virus is promising technique since it is straightforward and economically affordable, while the resulting viruses are capable of eliciting an adequate antiviral immune response. Nodavirus (NNV) is a devastating virus that mainly affects European sea bass juveniles and larvae, causing serious economic losses in Mediterranean aquaculture. In this work, a potential vaccine consisting on UV-inactivated NNV (iNNV) was generated and administered to healthy juveniles of European sea bass to elucidate whether it triggers the immune response and improves their survival upon challenge. First, iNNV failed to replicate in cell cultures and its intraperitoneal administration to sea bass juveniles also failed to produce fish mortality and induction of the type I interferon (IFN) pathway, indicating that the NNV was efficiently inactivated. By contrast, iNNV administration induced significant serum non-specific antimicrobial activity as well as a specific antiviral activity and immunoglobulin M (IgM) titres against NNV. Interestingly, few changes were observed at transcriptional level in genes related to either innate or adaptive immunity, suggesting that iNNV could be modulating the immune response at protein or functional level. In addition, the iNNV vaccinated group showed improved survival, reaching a relative survival percentage of 57.9%. Moreover, challenged fish that had been vaccinated presented increased serum antibacterial, antiviral and IgM titres, as well as the higher transcription of mhc1a, ifn, isg15 and cd8a genes in brain, while in the head-kidney the transcription of mhc1a, mhc2b and cd8a was down-regulated and mx, isg15 and tcrb was up-regulated. Although the UV-inactivated vaccine against NNV showed promising results, more effort should be addressed to improving this prophylactic method by increasing our understanding of its action mechanisms, thus enabling the mortality rate of NNV to be further reduced.


Subject(s)
Bass/immunology , Nodaviridae/immunology , RNA Virus Infections/immunology , Vaccines, Inactivated/immunology , Viral Vaccines/immunology , Adaptive Immunity/immunology , Animals , Aquaculture/methods , Bass/virology , Brain/immunology , Brain/virology , Fish Diseases/immunology , Fish Diseases/virology , Head Kidney/immunology , Head Kidney/virology , Immunity, Innate/immunology , Immunoglobulin M/immunology , Interferon Type I/immunology , RNA Virus Infections/virology , Vaccination/methods
16.
Fish Shellfish Immunol ; 74: 627-636, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29414318

ABSTRACT

Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the central nervous system, is considered one of the most serious viral diseases in marine aquaculture. Although some studies have localized NNV in the retina cells, none has dealt with immunity in the retina. Thus, for the first time, we intravitreally infected healthy specimens of European sea bass (Dicentrarchus labrax) with NNV with the aim of characterizing the immune response in the retina. Ultrastructural analysis detected important retinal injuries and structure degradation, including pycnosis, hydropic degeneration and vacuolization in some cell layers as well as myelin sheaths in the optic nerve fibres. Immunohistochemistry demonstrated that NNV replicated in the eyes. Regarding retinal immunity, NNV infection elicited the transcription of genes encoding proteins involved in the interferon (IFN) and cell-mediated cytotoxicity (CMC) responses as well as B and T cell markers, demonstrating that viral replication influences innate and adaptive responses. Further studies are needed to understand the retina immunity and whether the main retinal function, vision, is affected by nodavirus.


Subject(s)
Bass/genetics , Bass/immunology , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Retina/immunology , Animals , Fish Diseases/virology , Nodaviridae/physiology , RNA Virus Infections/immunology , RNA Virus Infections/virology , Retina/virology , Retinal Diseases/immunology , Retinal Diseases/virology
17.
Fish Shellfish Immunol ; 73: 220-227, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29277364

ABSTRACT

Interferons (IFNs) play a key role in the innate immunity of vertebrates against viral infections by inducing hundreds of IFN-stimulated genes (ISGs), such as isg15. Isg15 is an ubiquitin-like protein, which can conjugate cellular and viral proteins in a process called ISGylation, although it can also act as a cytokine-like protein. Gilthead seabream (Sparus aurata L.) is an important asymptomatic carrier of viral haemorrhagic septicaemia virus (VHSV) and nodavirus, representing a threat to other co-cultivated susceptible species. In order to better understand virus-host interactions in this fish species, this study addresses the identification and molecular characterization of seabream isg15 (sb-isg15). In addition, the modulation of transcript levels of sb-isg15 was analysed in SAF-1 cells and seabream acidophilic granulocytes (AGs) stimulated in vitro with different pathogen-associated molecular patterns (PAMPs) or inoculated with VHSV and striped jack nervous necrosis virus (SJNNV). The full-length cDNA of sb-isg15 gene, encoding a predicted protein of 155 amino acids, was identified and seen to share the same characteristics as other fish and mammalian isg15 genes. Here we report the clear induction of sb-isg15 transcript levels in SAF-1 cells and AGs stimulated with toll-like receptor (TLR) ligands, such as polyinosinic:polycytidylic acid (poly I:C) or genomic DNA from Vibrio anguillarum (VaDNA), respectively. Furthermore, VHSV and SJNNV inoculation induced a significant degree of sb-isg15 transcription in SAF-1 cells and AGs. However, the relative levels of viral RNA transcription showed that SJNNV replication seems to be more efficient than VHSV in both in vitro systems. Interestingly, sb-isg15 transcript induction elicited by VaDNA was reduced in VHSV- and SJNNV-inoculated AGs, suggesting an interference prompted by the viruses against the type I IFN system. Taken together, these findings support the use of seabream AGs as a valuable experimental system to study virus-host interactions, in which sb-isg15 seems to play an important role.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Interferon Type I/genetics , Sea Bream/genetics , Sea Bream/immunology , Amino Acid Sequence , Animals , Base Sequence , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Interferon Type I/chemistry , Interferon Type I/immunology , Nodaviridae/physiology , Novirhabdovirus/physiology , Phylogeny , RNA Virus Infections/immunology , Rhabdoviridae Infections/immunology , Sequence Alignment/veterinary
18.
Front Immunol ; 8: 736, 2017.
Article in English | MEDLINE | ID: mdl-28706519

ABSTRACT

Natural antibodies play crucial roles in pathogen elimination, B-cell survival and homeostasis, and inflammatory and autoimmune diseases. Although estrogens are able to regulate both innate and adaptive immune responses, their role in the production of natural antibodies is unknown. Here, we show that the dietary intake of the synthetic estradiol analog, 17α-ethinylestradiol (EE2), one of the most potent pharmaceutical estrogens and intensively used in human therapeutics as a component of most oral contraceptives, regulates the abundance and proliferation of T and IgM+ B lymphocytes in the teleost fish gilthead seabream (Sparus aurata L.). Furthermore, for the first time in vertebrates, it is shown that estrogen signaling through G protein-coupled estrogen receptor 1 (GPER1) induces the production of polyreactive natural antibodies, which are able to crossreact with unrelated antigens and commensal and pathogenic bacteria. In addition, the serum from fish treated with EE2 or the GPER1 agonist G1 shows higher complement-dependent bactericidal activity than that from non-treated specimens. These results demonstrate that estrogens and GPER1 are the key regulators of natural antibody production and pathogen clearance in fish, paving the way for future studies in other vertebrate classes.

19.
Redox Biol ; 11: 682-687, 2017 04.
Article in English | MEDLINE | ID: mdl-28167333

ABSTRACT

The objective of the present study is to characterize the metabolic and antioxidant profile of white muscle of shi drum in two sites of the body, anterior dorsal (AM) and posterior dorsal (PM) portions. In addition, it will be analyzed the possible effect of starvation and a subsequent refeeding, with two different protocols, pair feeding and ad libitum. Activities of key enzymes of intermediary metabolism and of antioxidant enzymes, as well as lipid peroxidation, as an index of oxidative stress, were evaluated. The results indicate the existence of a regional asymmetry of the metabolic capacities of the white muscle of shi drum, which is likely related to the different contribution to swimming of the body regions examined. Starvation induces a metabolic depression that is more marked in those activities that support burst swimming in PM, while those activities supporting maintenance requirements are conserved. The greatest energy demands during starvation appear to lie in AM, which showed the highest oxidative metabolism rate. The increased use of fatty acids as energy source for AM leads to oxidative stress. A period of more than four weeks of refeeding for full restoration of metabolic capacities in AM is needed, probably related to the higher muscle mass located in this region. On the contrary, all enzyme activities in PM returned to control levels in both refeeding protocols, but pair feeding seems to be advantageous since compensatory growth has been taking place without signs of oxidative stress. This work was addressed to gain knowledge on the physiology of a promising fish species in aquaculture like shi drum. The results displayed here show how the starving and further re-feeding events could generate oxidative stress situations characterized by high lipid peroxidation levels which may influence negatively on the quality of the edible part of the fish. This study opens an interesting field on this fish species which deserves being investigated in the future.


Subject(s)
Antioxidants/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Animals , Fishes/metabolism , Lipid Peroxidation/genetics , Starvation
20.
Article in English | MEDLINE | ID: mdl-27553761

ABSTRACT

Common dentex (Dentex dentex) is an appreciated carnivorous fish with high growth rate and life cycle adaptable to existing farming techniques. Since the use of carbohydrates is an economic and sustainable alternative for a protein-sparing effect, the study of how this macronutrient affects the welfare of carnivorous species must be studied. The aim of the present study was to evaluate the effects of different types and levels of carbohydrates on common dentex oxidative status. Nine isonitrogenous (43%) and isoenergetic (22MJkg-1) diets were formulated combining three types (pregelatinized starch-PS, dextrin-Dx and maltodextrin-Mx) and three levels (12, 18 and 24%) of carbohydrates. The activities of catalase-CAT, superoxide dismutase-SOD, glutathione peroxidase-GPX, glutathione reductase-GR and glucose 6-phosphate dehydrogenase-G6PDH, SOD isoenzymatic profile, lipid peroxidation-LPO and protein oxidation-PO were determined in liver and white muscle. SOD and CAT were not affected. GPX in liver and white muscle and GR in liver increased at higher inclusion carbohydrates levels. The lowest levels of GR and G6PDH in both tissues and LPO in liver were observed in maltodextrin groups. No significant effects by carbohydrate source were observed in liver PO and white muscle LPO. Regarding carbohydrate level effect, 18% and 24% dietary inclusion level decreased LPO in white muscle and PO in liver. LPO in liver was also decreased at 24% inclusion level. Altogether, results indicate the use of carbohydrates as an alternative energy source does not produce negative effects on oxidative status of common dentex, on the contrary, even contribute to their oxidative protection.


Subject(s)
Carnivory , Dietary Carbohydrates/administration & dosage , Enzymes/metabolism , Fishes/metabolism , Oxidative Stress , Animals , Liver/enzymology , Liver/metabolism , Muscles/enzymology , Muscles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...