Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 40(13): 111404, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170835

ABSTRACT

Dysregulation of alternative splicing in prostate cancer is linked to transcriptional programs activated by AR, ERG, FOXA1, and MYC. Here, we show that FOXA1 functions as the primary orchestrator of alternative splicing dysregulation across 500 primary and metastatic prostate cancer transcriptomes. We demonstrate that FOXA1 binds to the regulatory regions of splicing-related genes, including HNRNPK and SRSF1. By controlling trans-acting factor expression, FOXA1 exploits an "exon definition" mechanism calibrating alternative splicing toward dominant isoform production. This regulation especially impacts splicing factors themselves and leads to a reduction of nonsense-mediated decay (NMD)-targeted isoforms. Inclusion of the NMD-determinant FLNA exon 30 by FOXA1-controlled oncogene SRSF1 promotes cell growth in vitro and predicts disease recurrence. Overall, we report a role for FOXA1 in rewiring the alternative splicing landscape in prostate cancer through a cascade of events from chromatin access, to splicing factor regulation, and, finally, to alternative splicing of exons influencing patient survival.


Subject(s)
Alternative Splicing , Prostatic Neoplasms , Alternative Splicing/genetics , Chromatin , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Neoplasm Recurrence, Local , Prostatic Neoplasms/genetics , RNA Splicing Factors/metabolism , Serine-Arginine Splicing Factors/metabolism , Trans-Activators/metabolism
2.
Cell Rep ; 23(5): 1448-1460, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29719257

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors.


Subject(s)
Carcinoma, Pancreatic Ductal/immunology , Macrophages/immunology , Models, Immunological , Neoplasm Proteins/immunology , Pancreatic Neoplasms/immunology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology , T-Lymphocytes/immunology , Adult , Aniline Compounds/pharmacology , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Female , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/genetics , Macrophages/pathology , Male , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , T-Lymphocytes/pathology , Xenograft Model Antitumor Assays
3.
J Cell Sci ; 122(Pt 24): 4516-25, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19920079

ABSTRACT

Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRalpha. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Mitochondria/metabolism , Mitogens/metabolism , Neuregulins/metabolism , Schwann Cells/metabolism , Animals , Cell Line , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitochondria/genetics , Phosphatidylinositol 3-Kinases/metabolism , Rats , Signal Transduction
4.
Cell Signal ; 20(5): 836-43, 2008 May.
Article in English | MEDLINE | ID: mdl-18280112

ABSTRACT

Extracellular signal-regulated kinase-1 and -2 (ERK1/2) are activated by dual threonine and tyrosine phosphorylation of a TEY motif. The highly related kinase ERK5 is also activated by phosphorylation at a TEY motif. Inactivation of ERK1/2 is achieved by distinct members of the dual-specificity protein phosphatase (DUSP) family, which are responsible for the specific, regulated de-phosphorylation of the TEY motif. These include both nuclear (DUSP5) and cytoplasmic (DUSP6) enzymes. DUSP6, a candidate tumour suppressor gene, is thought to be highly specific for inactivation of ERK1/2 but several reports have suggested that it may also inactivate ERK5. Here we have compared the ability of DUSP6 to regulate the ERK1/2 and ERK5 protein kinases. We find that DUSP6 binds to ERK1/2 in both yeast and human cells but fails to bind to ERK5. Recombinant ERK2 can induce catalytic activation of DUSP6 whereas ERK5 cannot. Ectopic expression of DUSP6 can de-phosphorylate a co-expressed ERK2 construct but does not de-phosphorylate ERK5. Finally, expression of DUSP6 blocks the MEK1-driven activation of GAL4-ELK1, an ERK1/2-regulated transcription factor, but fails to block the MEK5-driven activation of GAL4-MEF2D, an ERK5-regulated transcription factor. These results demonstrate that even upon over-expression DUSP6 fails to inactivate ERK5, confirming that it is indeed an ERK1/2-specific DUSP.


Subject(s)
Dual Specificity Phosphatase 6/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Cell Line , Dual Specificity Phosphatase 6/genetics , Humans , MADS Domain Proteins/metabolism , MEF2 Transcription Factors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , Myogenic Regulatory Factors/metabolism , Phosphorylation , Protein Binding , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Transfection , Two-Hybrid System Techniques , ets-Domain Protein Elk-1/metabolism
5.
J Cell Sci ; 118(Pt 19): 4527-39, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16179610

ABSTRACT

Sorting nexins are a large family of phox-homology-domain-containing proteins that have been implicated in the control of endosomal sorting. Sorting nexin-1 is a component of the mammalian retromer complex that regulates retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network. In yeast, retromer is composed of Vps5p (the orthologue of sorting nexin-1), Vps17p (a related sorting nexin) and a cargo selective subcomplex composed of Vps26p, Vps29p and Vps35p. With the exception of Vps17p, mammalian orthologues of all yeast retromer components have been identified. For Vps17p, one potential mammalian orthologue is sorting nexin-2. Here we show that, like sorting nexin-1, sorting nexin-2 binds phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5-bisphosphate, and possesses a Bin/Amphiphysin/Rvs domain that can sense membrane curvature. However, in contrast to sorting nexin-1, sorting nexin-2 could not induce membrane tubulation in vitro or in vivo. Functionally, we show that endogenous sorting nexin-1 and sorting nexin-2 co-localise on high curvature tubular elements of the 3-phosphoinositide-enriched early endosome, and that suppression of sorting nexin-2 does not perturb the degradative sorting of receptors for epidermal growth factor or transferrin, nor the steady-state distribution of the cation-independent mannose 6-phosphate receptor. However, suppression of sorting nexin-2 results in a subtle alteration in the kinetics of cation-independent mannose 6-phosphate receptor retrieval. These data suggest that although sorting nexin-2 may be a component of the retromer complex, its presence is not essential for the regulation of endosome-to-trans Golgi network retrieval of the cation-independent mannose 6-phosphate receptor.


Subject(s)
Carrier Proteins/metabolism , Endosomes/metabolism , Protein Isoforms/metabolism , Vesicular Transport Proteins/metabolism , trans-Golgi Network/metabolism , Animals , Biological Transport/physiology , Biomarkers , Carrier Proteins/genetics , Endosomes/ultrastructure , ErbB Receptors/metabolism , HeLa Cells , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Isoforms/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, IGF Type 2/metabolism , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Vesicular Transport Proteins/genetics , trans-Golgi Network/ultrastructure
6.
J Cell Biol ; 170(2): 183-90, 2005 Jul 18.
Article in English | MEDLINE | ID: mdl-16009725

ABSTRACT

The versatility of Ca2+ as a second messenger lies in the complex manner in which Ca2+ signals are generated. How information contained within the Ca2+ code is interpreted underlies cell function. Recently, we identified CAPRI and RASAL as related Ca2+-triggered Ras GTPase-activating proteins. RASAL tracks agonist-stimulated Ca2+ oscillations by repetitively associating with the plasma membrane, yet CAPRI displays a long-lasting Ca2+-triggered translocation that is refractory to cytosolic Ca2+ oscillations. CAPRI behavior is Ca2+- and C2 domain-dependent but sustained recruitment is predominantly Ca2+ independent, necessitating integration of Ca2+ by the C2 domains with agonist-evoked plasma membrane interaction sites for the pleckstrin homology domain. Using an assay to monitor Ras activity in real time, we correlate the spatial and temporal translocation of CAPRI with the deactivation of H-Ras. CAPRI seems to low-pass filter the Ca2+ signal, converting different intensities of stimulation into different durations of Ras activity in contrast to the preservation of Ca2+ frequency information by RASAL, suggesting sophisticated modes of Ca2+-regulated Ras deactivation.


Subject(s)
Calcium Signaling/physiology , ras GTPase-Activating Proteins/metabolism , ras Proteins/physiology , Animals , CHO Cells , Calcium/metabolism , Cell Membrane/metabolism , Cricetinae , Cricetulus , Genes, ras , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Protein Structure, Tertiary , Protein Transport , Second Messenger Systems/physiology , ras GTPase-Activating Proteins/genetics , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...