Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(3): e1011921, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452057

ABSTRACT

In an ever-changing visual world, animals' survival depends on their ability to perceive and respond to rapidly changing motion cues. The primary visual cortex (V1) is at the forefront of this sensory processing, orchestrating neural responses to perturbations in visual flow. However, the underlying neural mechanisms that lead to distinct cortical responses to such perturbations remain enigmatic. In this study, our objective was to uncover the neural dynamics that govern V1 neurons' responses to visual flow perturbations using a biologically realistic computational model. By subjecting the model to sudden changes in visual input, we observed opposing cortical responses in excitatory layer 2/3 (L2/3) neurons, namely, depolarizing and hyperpolarizing responses. We found that this segregation was primarily driven by the competition between external visual input and recurrent inhibition, particularly within L2/3 and L4. This division was not observed in excitatory L5/6 neurons, suggesting a more prominent role for inhibitory mechanisms in the visual processing of the upper cortical layers. Our findings share similarities with recent experimental studies focusing on the opposing influence of top-down and bottom-up inputs in the mouse primary visual cortex during visual flow perturbations.


Subject(s)
Visual Cortex , Mice , Animals , Visual Cortex/physiology , Photic Stimulation , Neurons/physiology , Sensation , Visual Perception/physiology
2.
Neuron ; 112(11): 1876-1890.e4, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38447579

ABSTRACT

In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.


Subject(s)
Interneurons , Somatostatin , Vasoactive Intestinal Peptide , Visual Cortex , Animals , Vasoactive Intestinal Peptide/metabolism , Visual Cortex/physiology , Mice , Somatostatin/metabolism , Interneurons/physiology , Neural Inhibition/physiology , Male , Mice, Inbred C57BL , Photic Stimulation/methods , Visual Perception/physiology
3.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293236

ABSTRACT

The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.

4.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961331

ABSTRACT

Recent studies have found dramatic cell-type specific responses to stimulus novelty, highlighting the importance of analyzing the cortical circuitry at the cell-type specific level of granularity to understand brain function. Although initial work classified and characterized activity for each cell type, the specific alterations in cortical circuitry-particularly when multiple novelty effects interact-remain unclear. To address this gap, we employed a large-scale public dataset of electrophysiological recordings in the visual cortex of awake, behaving mice using Neuropixels probes and designed population network models to investigate the observed changes in neural dynamics in response to a combination of distinct forms of novelty. The model parameters were rigorously constrained by publicly available structural datasets, including multi-patch synaptic physiology and electron microscopy data. Our systematic optimization approach identified tens of thousands of model parameter sets that replicate the observed neural activity. Analysis of these solutions revealed generally weaker connections under novel stimuli, as well as a shift in the balance e between SST and VIP populations. Along with this, PV and SST populations experienced overall more excitatory influences compared to excitatory and VIP populations. Our results also highlight the role of VIP neurons in multiple aspects of visual stimulus processing and altering gain and saturation dynamics under novel conditions. In sum, our findings provide a systematic characterization of how the cortical circuit adapts to stimulus novelty by combining multiple rich public datasets.

5.
Elife ; 122023 07 24.
Article in English | MEDLINE | ID: mdl-37486105

ABSTRACT

Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.


Subject(s)
Neurons , Primary Visual Cortex , Animals , Mice , Neurons/physiology , Brain , Models, Neurological
6.
Front Comput Neurosci ; 17: 1040629, 2023.
Article in English | MEDLINE | ID: mdl-36994445

ABSTRACT

Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain. Therefore, here we use Neuropixels recordings from the mouse brain to characterize the ND metric across a wide range of temporal scales, within neural populations recorded at single-cell resolution in localized regions. Using the spiking activity of thousands of simultaneously recorded neurons spanning 6 visual cortical areas and the visual thalamus, we show that the ND of stimulus-evoked activity of the entire visual cortex is higher for naturalistic stimuli relative to artificial ones. This finding holds in most individual areas throughout the visual hierarchy. Moreover, for animals performing an image change detection task, ND of the entire visual cortex (though not individual areas) is higher for successful detection compared to failed trials, consistent with the assumed perception of the stimulus. Together, these results suggest that ND computed on cellular-level neural recordings is a useful tool highlighting cell populations that may be involved in subjective perception.

7.
J Physiol ; 601(15): 3123-3139, 2023 08.
Article in English | MEDLINE | ID: mdl-36567262

ABSTRACT

The Hodgkin-Huxley model of action potential generation and propagation, published in the Journal of Physiology in 1952, initiated the field of biophysically detailed computational modelling in neuroscience, which has expanded to encompass a variety of species and components of the nervous system. Here we review the developments in this area with a focus on efforts in the community towards modelling the mammalian neocortex using spatially extended conductance-based neuronal models. The Hodgkin-Huxley formalism and related foundational contributions, such as Rall's cable theory, remain widely used in these efforts to the current day. We argue that at present the field is undergoing a qualitative change due to new very rich datasets describing the composition, connectivity and functional activity of cortical circuits, which are being integrated systematically into large-scale network models. This trend, combined with the accelerating development of convenient software tools supporting such complex modelling projects, is giving rise to highly detailed models of the cortex that are extensively constrained by the data, enabling computational investigation of a multitude of questions about cortical structure and function.


Subject(s)
Neocortex , Neurons , Animals , Neurons/physiology , Action Potentials/physiology , Computer Simulation , Models, Neurological , Mammals
8.
Neuron ; 111(2): 275-290.e5, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36368317

ABSTRACT

The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.


Subject(s)
Claustrum , Mice , Animals , Claustrum/physiology , Basal Ganglia/physiology , Frontal Lobe , Neurons/physiology , Optogenetics
9.
Entropy (Basel) ; 24(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359629

ABSTRACT

A hypothesis is presented that non-separability of degrees of freedom is the fundamental property underlying consciousness in physical systems. The amount of consciousness in a system is determined by the extent of non-separability and the number of degrees of freedom involved. Non-interacting and feedforward systems have zero consciousness, whereas most systems of interacting particles appear to have low non-separability and consciousness. By contrast, brain circuits exhibit high complexity and weak but tightly coordinated interactions, which appear to support high non-separability and therefore high amount of consciousness. The hypothesis applies to both classical and quantum cases, and we highlight the formalism employing the Wigner function (which in the classical limit becomes the Liouville density function) as a potentially fruitful framework for characterizing non-separability and, thus, the amount of consciousness in a system. The hypothesis appears to be consistent with both the Integrated Information Theory and the Orchestrated Objective Reduction Theory and may help reconcile the two. It offers a natural explanation for the physical properties underlying the amount of consciousness and points to methods of estimating the amount of non-separability as promising ways of characterizing the amount of consciousness.

10.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35022186

ABSTRACT

Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis-quantifying distinct patterns of neurophysiological activity-has been proposed as an "inside-out" approach that addresses this question. This methodology contrasts with "outside-in" approaches such as feature tuning and decoding analyses, which are defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neuronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.


Subject(s)
Visual Cortex , Animals , Female , Locomotion/physiology , Male , Mice , Neurons/physiology , Neurophysiology , Photic Stimulation , Visual Cortex/physiology
11.
Nature ; 592(7852): 86-92, 2021 04.
Article in English | MEDLINE | ID: mdl-33473216

ABSTRACT

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Subject(s)
Action Potentials/physiology , Visual Cortex/anatomy & histology , Visual Cortex/physiology , Animals , Datasets as Topic , Electrophysiology , Male , Mice , Mice, Inbred C57BL , Photic Stimulation , Thalamus/anatomy & histology , Thalamus/cytology , Thalamus/physiology , Visual Cortex/cytology
12.
Nat Comput Sci ; 1(2): 120-127, 2021 Feb.
Article in English | MEDLINE | ID: mdl-35356158

ABSTRACT

Consistent identification of neurons in different experimental modalities is a key problem in neuroscience. Although methods to perform multimodal measurements in the same set of single neurons have become available, parsing complex relationships across different modalities to uncover neuronal identity is a growing challenge. Here we present an optimization framework to learn coordinated representations of multimodal data and apply it to a large multimodal dataset profiling mouse cortical interneurons. Our approach reveals strong alignment between transcriptomic and electrophysiological characterizations, enables accurate cross-modal data prediction, and identifies cell types that are consistent across modalities.

13.
PLoS Comput Biol ; 16(11): e1008386, 2020 11.
Article in English | MEDLINE | ID: mdl-33253147

ABSTRACT

Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting opportunities and formidable challenges to existing theoretical and modeling approaches. To turn massive datasets into predictive quantitative frameworks, the field needs software solutions for systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and others, BMTK offers a consistent user experience across multiple levels of resolution. It permits highly sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is an open-source package provided as a resource supporting modeling-based discovery in the community.


Subject(s)
Brain Mapping/methods , Brain/physiology , Computational Biology , Software , Action Potentials , Biophysical Phenomena , Humans , Nerve Net
14.
Neuron ; 106(3): 388-403.e18, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32142648

ABSTRACT

Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these rules systematically, we integrated information from extensive literature curation and large-scale experimental surveys into a data-driven, biologically realistic simulation of the awake mouse primary visual cortex. The model was constructed at two levels of granularity, using either biophysically detailed or point neurons. Both variants have identical network connectivity and were compared to each other and to experimental recordings of visual-driven neural activity. While tuning these networks to recapitulate experimental data, we identified rules governing cell-class-specific connectivity and synaptic strengths. These structural constraints constitute hypotheses that can be tested experimentally. Despite their distinct single-cell abstraction, both spatially extended and point models perform similarly at the level of firing rate distributions for the questions we investigated. All data and models are freely available as a resource for the community.


Subject(s)
Models, Neurological , Neurons/physiology , Visual Cortex/physiology , Animals , Mice , Synapses/physiology , Systems Integration , Visual Cortex/cytology
15.
PLoS Comput Biol ; 16(2): e1007696, 2020 02.
Article in English | MEDLINE | ID: mdl-32092054

ABSTRACT

Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and high-performance data format is necessary. To address this need, we have developed the Scalable Open Network Architecture TemplAte (SONATA) data format. It is designed for memory and computational efficiency and works across multiple platforms. The format represents neuronal circuits and simulation inputs and outputs via standardized files and provides much flexibility for adding new conventions or extensions. SONATA is used in multiple modeling and visualization tools, and we also provide reference Application Programming Interfaces and model examples to catalyze further adoption. SONATA format is free and open for the community to use and build upon with the goal of enabling efficient model building, sharing, and reproducibility.


Subject(s)
Brain/physiology , Computational Biology/methods , Neurosciences , Algorithms , Brain Mapping , Computer Simulation , Databases, Factual , Humans , Models, Neurological , Neurons/physiology , Programming Languages , Reproducibility of Results , Software
16.
PLoS Comput Biol ; 14(11): e1006535, 2018 11.
Article in English | MEDLINE | ID: mdl-30419013

ABSTRACT

Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.


Subject(s)
Visual Cortex/physiology , Animals , Computer Simulation , Mice , Models, Neurological , Neurons/metabolism , Synapses/metabolism , Thalamus/physiology , Visual Cortex/cytology
17.
PLoS One ; 13(8): e0201630, 2018.
Article in English | MEDLINE | ID: mdl-30071069

ABSTRACT

There is a significant interest in the neuroscience community in the development of large-scale network models that would integrate diverse sets of experimental data to help elucidate mechanisms underlying neuronal activity and computations. Although powerful numerical simulators (e.g., NEURON, NEST) exist, data-driven large-scale modeling remains challenging due to difficulties involved in setting up and running network simulations. We developed a high-level application programming interface (API) in Python that facilitates building large-scale biophysically detailed networks and simulating them with NEURON on parallel computer architecture. This tool, termed "BioNet", is designed to support a modular workflow whereby the description of a constructed model is saved as files that could be subsequently loaded for further refinement and/or simulation. The API supports both NEURON's built-in as well as user-defined models of cells and synapses. It is capable of simulating a variety of observables directly supported by NEURON (e.g., spikes, membrane voltage, intracellular [Ca++]), as well as plugging in modules for computing additional observables (e.g. extracellular potential). The high-level API platform obviates the time-consuming development of custom code for implementing individual models, and enables easy model sharing via standardized files. This tool will help refocus neuroscientists on addressing outstanding scientific questions rather than developing narrow-purpose modeling code.


Subject(s)
Models, Neurological , Software , Animals , Mice , Nerve Net/physiology , Neurons/physiology , Photic Stimulation , Synapses/physiology
18.
Nat Commun ; 9(1): 710, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459718

ABSTRACT

The cellular components of mammalian neocortical circuits are diverse, and capturing this diversity in computational models is challenging. Here we report an approach for generating biophysically detailed models of 170 individual neurons in the Allen Cell Types Database to link the systematic experimental characterization of cell types to the construction of cortical models. We build models from 3D morphologies and somatic electrophysiological responses measured in the same cells. Densities of active somatic conductances and additional parameters are optimized with a genetic algorithm to match electrophysiological features. We evaluate the models by applying additional stimuli and comparing model responses to experimental data. Applying this technique across a diverse set of neurons from adult mouse primary visual cortex, we verify that models preserve the distinctiveness of intrinsic properties between subsets of cells observed in experiments. The optimized models are accessible online alongside the experimental data. Code for optimization and simulation is also openly distributed.


Subject(s)
Neurons/physiology , Visual Cortex/cytology , Animals , Biophysics , Electrophysiological Phenomena , Mice , Models, Neurological , Neurons/chemistry , Visual Cortex/chemistry , Visual Cortex/physiology
19.
Nat Commun ; 7: 13307, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796308

ABSTRACT

Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/metabolism , Animals , Artifacts , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Epidermal Growth Factor/metabolism , Fluorescence Resonance Energy Transfer , Ligands , Molecular Dynamics Simulation , Phosphorylation , Protein Domains , Protein Multimerization , Signal Transduction
20.
Proc Natl Acad Sci U S A ; 113(27): 7337-44, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27382147

ABSTRACT

The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.


Subject(s)
Models, Neurological , Neurosciences/methods , Visual Cortex/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...