Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 7(1): 33, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37340248

ABSTRACT

BACKGROUND: Early diagnosis of the potentially fatal but curable chronic pulmonary embolism (CPE) is challenging. We have developed and investigated a novel convolutional neural network (CNN) model to recognise CPE from CT pulmonary angiograms (CTPA) based on the general vascular morphology in two-dimensional (2D) maximum intensity projection images. METHODS: A CNN model was trained on a curated subset of a public pulmonary embolism CT dataset (RSPECT) with 755 CTPA studies, including patient-level labels of CPE, acute pulmonary embolism (APE), or no pulmonary embolism. CPE patients with right-to-left-ventricular ratio (RV/LV) < 1 and APE patients with RV/LV ≥ 1 were excluded from the training. Additional CNN model selection and testing were done on local data with 78 patients without the RV/LV-based exclusion. We calculated area under the receiver operating characteristic curves (AUC) and balanced accuracies to evaluate the CNN performance. RESULTS: We achieved a very high CPE versus no-CPE classification AUC 0.94 and balanced accuracy 0.89 on the local dataset using an ensemble model and considering CPE to be present in either one or both lungs. CONCLUSIONS: We propose a novel CNN model with excellent predictive accuracy to differentiate chronic pulmonary embolism with RV/LV ≥ 1 from acute pulmonary embolism and non-embolic cases from 2D maximum intensity projection reconstructions of CTPA. RELEVANCE STATEMENT: A DL CNN model identifies chronic pulmonary embolism from CTA with an excellent predictive accuracy. KEY POINTS: • Automatic recognition of CPE from computed tomography pulmonary angiography was developed. • Deep learning was applied on two-dimensional maximum intensity projection images. • A large public dataset was used for training the deep learning model. • The proposed model showed an excellent predictive accuracy.


Subject(s)
Hominidae , Pulmonary Embolism , Humans , Animals , Pulmonary Embolism/diagnostic imaging , Tomography, X-Ray Computed/methods , Angiography/methods , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...