Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 59(14): 1876-1891.e7, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38788715

ABSTRACT

Amyloids are known as irreversible aggregates associated with neurodegenerative diseases. However, recent evidence shows that a subset of amyloids can form reversibly and fulfill essential cellular functions. Yet, the molecular mechanisms regulating functional amyloids and distinguishing them from pathological aggregates remain unclear. Here, we investigate the conserved principles of amyloid reversibility by studying the essential metabolic enzyme pyruvate kinase (PK) in yeast and human cells. We demonstrate that yeast PK (Cdc19) and human PK (PKM2) form reversible amyloids through a pH-sensitive amyloid core. Stress-induced cytosolic acidification promotes aggregation via protonation of specific glutamate (yeast) or histidine (human) residues within the amyloid core. Mutations mimicking protonation cause constitutive PK aggregation, while non-protonatable PK mutants remain soluble even upon stress. Physiological PK aggregation is coupled to metabolic rewiring and glycolysis arrest, causing severe growth defects when misregulated. Our work thus identifies an evolutionarily conserved, potentially widespread mechanism regulating functional amyloids during stress.


Subject(s)
Amyloid , Pyruvate Kinase , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Hydrogen-Ion Concentration , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amyloid/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mutation/genetics , Glycolysis , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
3.
Nat Cell Biol ; 23(10): 1085-1094, 2021 10.
Article in English | MEDLINE | ID: mdl-34616026

ABSTRACT

Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.


Subject(s)
Amyloid/chemistry , Cell Cycle Proteins/chemistry , Cytoplasmic Granules/chemistry , Pyruvate Kinase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Adenosine Triphosphate/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Fructosediphosphates/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL