Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(11)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37998022

ABSTRACT

Iron is an essential nutrient for all life forms. Specialized mechanisms exist in bacteria to ensure iron uptake and its delivery to key enzymes within the cell, while preventing toxicity. Iron uptake and exchange networks must adapt to the different environmental conditions, particularly those that require the biosynthesis of multiple iron proteins, such as nitrogen fixation. In this review, we outline the mechanisms that the model diazotrophic bacterium Azotobacter vinelandii uses to ensure iron nutrition and how it adapts Fe metabolism to diazotrophic growth.

2.
Plant Sci ; 304: 110808, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33568304

ABSTRACT

Iron (Fe) is an essential micronutrient for plants and is present abundantly in the Earth's crust. However, Fe bioavailability in alkaline soils is low due to the decreased solubility of the ferric ions. Previously, we have demonstrated the relationship between the PAP/SAL1 retrograde signaling pathway, the activity of Strategy I Fe uptake genes (FIT, FRO2, IRT1), and ethylene signaling. In this work, we have characterized mutant lines that are deficient in this retrograde signaling pathway and their ability to grow in alkaline soils. This adverse growth condition caused less impact on mutant plants, which showed less reduced rosette area, and higher carotenoid, chlorophyll and Fe content than wild-type plants. Several genes involved in the biosynthesis and excretion of secondary metabolites derived from the phenylpropanoid pathway, which improve Fe uptake, were elevated in mutant plants. Finally, we observed an increase in excreted fluorescent phenolic compounds in mutant lines compared to wild-type plants. In this way, PAP/SAL1 mutants showed alterations in the biosynthesis of metabolites that mobilize Fe, which ultimately improved these plants ability to grow in alkaline soils. Results agree with the existence of a link between the PAP/SAL1 retrograde signaling pathway and the regulation of Fe deficiency responses in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Iron Deficiencies , Phosphoadenosine Phosphosulfate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction , Arabidopsis/physiology , Hydrogen-Ion Concentration , Iron/metabolism , Real-Time Polymerase Chain Reaction , Soil/chemistry
3.
Plants (Basel) ; 9(9)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32917022

ABSTRACT

In plants, the cysteine desulfurase (AtNFS1) and frataxin (AtFH) are involved in the formation of Fe-S groups in mitochondria, specifically, in Fe and sulfur loading onto scaffold proteins, and the subsequent formation of the mature Fe-S cluster. We found that the small mitochondrial chaperone, AtISD11, and AtFH are positive regulators for AtNFS1 activity in Arabidopsis. Moreover, when the three proteins were incubated together, a stronger attenuation of the Fenton reaction was observed compared to that observed with AtFH alone. Using pull-down assays, we found that these three proteins physically interact, and sequence alignment and docking studies showed that several amino acid residues reported as critical for the interaction of their human homologous are conserved. Our results suggest that AtFH, AtNFS1 and AtISD11 form a multiprotein complex that could be involved in different stages of the iron-sulfur cluster (ISC) pathway in plant mitochondria.

4.
Plant Mol Biol ; 102(3): 323-337, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31900819

ABSTRACT

KEY MESSAGE: There is a link between PAP/SAL retrograde pathway, ethylene signaling and Fe metabolism in Arabidopsis. Nuclear gene expression is regulated by a diversity of retrograde signals that travel from organelles to the nucleus in a lineal or classical model. One such signal molecule is 3'-phosphoadenisine-5'-phosphate (PAP) and it's in vivo levels are regulated by SAL1/FRY1, a phosphatase enzyme located in chloroplast and mitochondria. This metabolite inhibits the action of a group of exorribonucleases which participate in post-transcriptional gene expression regulation. Transcriptome analysis of Arabidopsis thaliana mutant plants in PAP-SAL1 pathway revealed that the ferritin genes AtFER1, AtFER3, and AtFER4 are up-regulated. In this work we studied Fe metabolism in three different mutants of the PAP/SAL1 retrograde pathway. Mutant plants showed increased Fe accumulation in roots, shoots and seeds when grown in Fe-sufficient condition, and a constitutive activation of the Strategy I Fe uptake genes. As a consequence, they grew more vigorously than wild type plants in Fe-deficient medium. However, when mutant plants grown in Fe-deficient conditions were sprayed with Fe in their leaves, they were unable to deactivate root Fe uptake. Ethylene synthesis inhibition revert the constitutive Fe uptake phenotype. We propose that there is a link between PAP/SAL pathway, ethylene signaling and Fe metabolism.


Subject(s)
Adenosine Diphosphate/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Iron/metabolism , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction , Adenosine Diphosphate/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Chlorophyll , Chloroplasts/metabolism , Ferritins/genetics , Ferritins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Homeostasis , Mitochondria/metabolism , Mutation , Phosphoric Monoester Hydrolases/genetics , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism
5.
Plant Cell Rep ; 38(8): 981-990, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31065779

ABSTRACT

KEY MESSAGE: The ISC Fe-S cluster biosynthetic pathway would play a key role in the regulation of iron and sulfur homeostasis in plants. The Arabidopsis thaliana mitochondrial cysteine desulfurase AtNFS1 has an essential role in cellular ISC Fe-S cluster assembly, and this pathway is one of the main sinks for iron (Fe) and sulfur (S) in the plant. In different plant species it has been reported a close relationship between Fe and S metabolisms; however, the regulation of both nutrient homeostasis is not fully understood. In this study, we have characterized AtNFS1 overexpressing and knockdown mutant Arabidopsis plants. Plants showed alterations in the ISC Fe-S biosynthetic pathway genes and in the activity of Fe-S enzymes. Genes involved in Fe and S uptakes, assimilation, and regulation were up-regulated in overexpressing plants and down-regulated in knockdown plants. Furthermore, the plant nutritional status in different tissues was in accordance with those gene activities: overexpressing lines accumulated increased amounts of Fe and S and mutant plant had lower contents of S. In summary, our results suggest that the ISC Fe-S cluster biosynthetic pathway plays a crucial role in the homeostasis of Fe and S in plants, and that it may be important in their regulation.


Subject(s)
Iron/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Sulfur/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Carbon-Sulfur Lyases/genetics , Carbon-Sulfur Lyases/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics
6.
Biochimie ; 156: 118-122, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30342111

ABSTRACT

Frataxin plays a key role in cellular iron homeostasis of different organisms. It is engaged in several activities at the FeS cluster assembly machinery and it is also involved in heme biosynthesis. In plants, two genes encoding ferrochelatases (FC1 and FC2) catalyze the incorporation of iron into protoporphyrin IX in the last stage of heme synthesis in chloroplasts. Despite ferrochelatases are absent from other cell compartments, a remaining ferrochelatase activity has been observed in plant mitochondria. Here we analyze the possibility that frataxin acts as the iron donor to protoporphyrin IX for the synthesis of heme groups in plant mitochondria. Our findings show that frataxin catalyzes the formation of heme in vitro when it is incubated with iron and protoporphyrin IX. When frataxin is combined with AtNFS1 and AtISD11 the ferrochelatse activity is increased. These results suggest that frataxin could be the iron donor in the final step of heme synthesis in plant mitochondria, and constitutes an important advance in the elucidation of the mechanisms of heme synthesis in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Ferrochelatase/metabolism , Iron-Binding Proteins/metabolism , Mitochondria/enzymology , Arabidopsis , Arabidopsis Proteins/chemistry , Catalysis , Chloroplasts/enzymology , Ferrochelatase/chemistry , Heme/biosynthesis , Iron-Binding Proteins/chemistry , Protoporphyrins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...