Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Biotechnol ; 87: 103126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554641

ABSTRACT

Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.


Subject(s)
Optogenetics , Optogenetics/methods , Humans , Biotechnology/methods , Biotechnology/trends , Light , Animals , Signal Transduction
2.
ACS Synth Biol ; 13(3): 752-762, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335541

ABSTRACT

Optogenetics is a versatile and powerful tool for the control and analysis of cellular signaling processes. The activation of cellular receptors by light using optogenetic switches usually requires genetic manipulation of cells. However, this considerably limits the application in primary, nonengineered cells, which is crucial for the study of physiological signaling processes and for controlling cell fate and function for therapeutic purposes. To overcome this limitation, we developed a system for the light-dependent extracellular activation of cell surface receptors of nonengineered cells termed OptoREACT (Optogenetic Receptor Activation) based on the light-dependent protein interaction of A. thaliana phytochrome B (PhyB) with PIF6. In the OptoREACT system, a PIF6-coupled antibody fragment binds the T cell receptor (TCR) of Jurkat or primary human T cells, which upon illumination is bound by clustered phytochrome B to induce receptor oligomerization and activation. For clustering of PhyB, we either used tetramerization by streptavidin or immobilized PhyB on the surface of cells to emulate the interaction of a T cell with an antigen-presenting cell. We anticipate that this extracellular optogenetic approach will be applicable for the light-controlled activation of further cell surface receptors in primary, nonengineered cells for versatile applications in fundamental and applied research.


Subject(s)
Optogenetics , Phytochrome B , Humans , Phytochrome B/genetics , Phytochrome B/metabolism , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/genetics , Cell Differentiation , Light
3.
Front Mol Neurosci ; 10: 438, 2017.
Article in English | MEDLINE | ID: mdl-29375301

ABSTRACT

Background: Chronic pain conditions are difficult to treat and the therapeutic outcome is frequently unsatisfactory. Changes in excitation/inhibition balance within the dorsal horn contribute to the establishment and persistence of chronic pain. Thus, facilitation of inhibitory neurotransmission is a promising approach to treat chronic pain pharmacologically. Glycine transporter 1 (GlyT1) plays an important role in regulating extracellular glycine concentrations. Aim of the present study therefore was to investigate whether the specific GlyT1 inhibitor bitopertin (RG1678; RO4917838) might constitute a novel treatment for chronic pain by facilitating glycinergic inhibition. Methods: Mechanical allodynia and thermal hyperalgesia were induced by chronic constriction injury of the sciatic nerve or carrageenan injections into the plantar surface of the hind paw in rodents. The effect of acute and long-term bitopertin application on the reaction threshold to mechanical and thermal stimuli was determined. General activity was determined in open field experiments. The glycine concentration in cerebrospinal fluid and blood was measured by HPLC. Results: Systemic application of bitopertin in chronic pain conditions lead to a significant increase of the reaction thresholds to mechanical and thermal stimuli in a time and dose-dependent manner. Long-term application of bitopertin effectuated stable beneficial effects over 4 weeks. Bitopertin did not alter reaction thresholds to stimuli in control animals and had no effect on general locomotor activity and anxiety but lead to an increased glycine concentration in cerebrospinal fluid. Conclusion: These findings suggest that inhibition of the GlyT1 by bitopertin represents a promising new approach for the treatment of chronic pain.

4.
Am J Hum Genet ; 99(5): 1172-1180, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27773429

ABSTRACT

Glycine is a major neurotransmitter that activates inhibitory glycine receptors and is a co-agonist for excitatory glutamatergic N-methyl-D-aspartate (NMDA) receptors. Two transporters, GLYT1 and GLYT2, regulate extracellular glycine concentrations within the CNS. Dysregulation of the extracellular glycine has been associated with hyperekplexia and nonketotic hyperglycinemia. Here, we report four individuals from two families who presented at birth with facial dysmorphism, encephalopathy, arthrogryposis, hypotonia progressing to hypertonicity with startle-like clonus, and respiratory failure. Only one individual survived the respiratory failure and was weaned off ventilation but has significant global developmental delay. Mildly elevated cerebrospinal fluid (CSF) glycine and normal serum glycine were observed in two individuals. In both families, we identified truncating mutations in SLC6A9, encoding GLYT1. We demonstrate that pharmacologic or genetic abolishment of GlyT1 activity in mice leads to mildly elevated glycine in the CSF but not in blood. Additionally, previously reported slc6a9-null mice and zebrafish mutants also display phenotypes consistent with the affected individuals we examined. Our data suggest that truncating SLC6A9 mutations lead to a distinct human neurological syndrome hallmarked by mildly elevated CSF glycine and normal serum glycine.


Subject(s)
Arthrogryposis/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Glycine/cerebrospinal fluid , Hyperglycinemia, Nonketotic/genetics , Animals , Arthrogryposis/diagnosis , Child, Preschool , Female , Gene Deletion , Gene Expression Regulation , Glycine/blood , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Hyperglycinemia, Nonketotic/diagnosis , Infant , Infant, Newborn , Male , Mice , Mice, Knockout , Pedigree
5.
Pain ; 156(9): 1647-1659, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25932687

ABSTRACT

Glycine transporter 1 (GlyT1) plays a crucial role in regulating extracellular glycine concentrations and might thereby constitute a new drug target for the modulation of glycinergic inhibition in pain signaling. Consistent with this view, inhibition of GlyT1 has been found to induce antinociceptive effects in various animal pain models. We have shown previously that the lidocaine metabolite N-ethylglycine (EG) reduces GlyT1-dependent glycine uptake by functioning as an artificial substrate for this transporter. Here, we show that EG is specific for GlyT1 and that in rodent models of inflammatory and neuropathic pain, systemic treatment with EG results in an efficient amelioration of hyperalgesia and allodynia without affecting acute pain. There was no effect on motor coordination or the development of inflammatory edema. No adverse neurological effects were observed after repeated high-dose application of EG. EG concentrations both in blood and spinal fluid correlated with an increase of glycine concentration in spinal fluid. The time courses of the EG and glycine concentrations corresponded well with the antinociceptive effect. Additionally, we found that EG reduced the increase in neuronal firing of wide-dynamic-range neurons caused by inflammatory pain induction. These findings suggest that systemically applied lidocaine exerts antihyperalgesic effects through its metabolite EG in vivo, by enhancing spinal inhibition of pain processing through GlyT1 modulation and subsequent increase of glycine concentrations at glycinergic inhibitory synapses. EG and other substrates of GlyT1, therefore, may be a useful therapeutic agent in chronic pain states involving spinal disinhibition.


Subject(s)
Analgesics/therapeutic use , N-substituted Glycines/therapeutic use , Neuralgia/drug therapy , Neurogenic Inflammation/drug therapy , Pain Threshold/drug effects , Analgesics/metabolism , Animals , Disease Models, Animal , Freund's Adjuvant/toxicity , Glutamic Acid/pharmacology , Glycine/cerebrospinal fluid , Glycine/pharmacology , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , N-substituted Glycines/metabolism , N-substituted Glycines/pharmacology , Neuralgia/etiology , Neuralgia/pathology , Neurogenic Inflammation/etiology , Pain Measurement , Physical Stimulation/adverse effects , Posterior Horn Cells/drug effects , Posterior Horn Cells/physiology , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Spinal Cord/physiopathology , Xenopus laevis
6.
Biochem Biophys Res Commun ; 423(4): 661-6, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22695116

ABSTRACT

Glycine serves as a neurotransmitter in spinal cord and brain stem, where it activates inhibitory glycine receptors. In addition, it serves as an essential co-agonist of excitatory N-methyl-d-aspartate receptors. In the central nervous system, extracellular glycine concentrations are regulated by two specific glycine transporters (GlyTs), GlyT1 and GlyT2. Here, we determined the relative transport activities and protein levels of GlyT1 and GlyT2 in membrane preparations from mouse brain stem and spinal cord at different developmental stages. We report that early postnatally (up to postnatal day P5) GlyT1 is the predominant transporter isoform responsible for a major fraction of the GlyT-mediated [(3)H]glycine uptake. At later stages (≥ P10), however, the transport activity and expression of GlyT2 increases, and in membrane fractions from adult mice both GlyTs contribute about equally to glycine uptake. These alterations in the activities and expression profiles of the GlyTs suggest that the contributions of GlyT1 and GlyT2 to the regulation of extracellular glycine concentrations at glycinergic synapses changes during development.


Subject(s)
Brain Stem/growth & development , Glycine Plasma Membrane Transport Proteins/biosynthesis , Glycine/metabolism , Spinal Cord/growth & development , Animals , Biological Transport , Brain Stem/metabolism , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Oocytes , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Sarcosine/analogs & derivatives , Sarcosine/pharmacology , Spinal Cord/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...