Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
EMBO J ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192033

ABSTRACT

Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's ß-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.

2.
New Phytol ; 243(2): 543-559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38515227

ABSTRACT

Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.


Subject(s)
Chloroplasts , Homeostasis , Chloroplasts/metabolism , Ions/metabolism , Ion Transport , Photosynthesis
3.
Nat Commun ; 15(1): 2792, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555362

ABSTRACT

Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thylakoids/metabolism , Protons , Antiporters/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Photosynthesis/physiology , Chloroplasts/metabolism , Light
4.
Plant Physiol ; 194(2): 982-1005, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37804523

ABSTRACT

During photosynthesis, plants must manage strong fluctuations in light availability on different time scales, leading to long-term acclimation and short-term responses. However, little is known about the regulation and coordination of these processes and the modulators involved. In this study, we used proteomics, metabolomics, and reverse genetics to investigate how different light environmental factors, such as intensity or variability, affect long-term and short-term acclimation responses of Arabidopsis (Arabidopsis thaliana) and the importance of the chloroplast redox network in their regulation. In the wild type, high light, but not fluctuating light, led to large quantitative changes in the proteome and metabolome, accompanied by increased photosynthetic dynamics and plant growth. This finding supports light intensity as a stronger driver for acclimation than variability. Deficiencies in NADPH-thioredoxin reductase C (NTRC) or thioredoxins m1/m2, but not thioredoxin f1, almost completely suppressed the re-engineering of the proteome and metabolome, with both the induction of proteins involved in stress and redox responses and the repression of those involved in cytosolic and plastid protein synthesis and translation being strongly attenuated. Moreover, the correlations of protein or metabolite levels with light intensity were severely disturbed, suggesting a general defect in the light-dependent acclimation response, resulting in impaired photosynthetic dynamics. These results indicate a previously unknown role of NTRC and thioredoxins m1/m2 in modulating light acclimation at proteome and metabolome levels to control dynamic light responses. NTRC, but not thioredoxins m1/m2 or f1, also improves short-term photosynthetic responses by balancing the Calvin-Benson cycle in fluctuating light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thioredoxin-Disulfide Reductase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Proteome/metabolism , Photosynthesis/physiology , Arabidopsis/metabolism , Chloroplasts/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , Oxidation-Reduction , Metabolome , Acclimatization
5.
Nat Commun ; 14(1): 7052, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923709

ABSTRACT

Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contrasting our expectations, growth of mutants with decreased PR enzyme levels was least affected in fluctuating light compared with wild type. Results for growth, photosynthesis and metabolites combined with thermodynamics-based flux analysis revealed two main causal factors for this unanticipated finding: reduced rates of photosynthesis in fluctuating light and complex re-routing of metabolic fluxes. Only in non-fluctuating light, mutants lacking the glutamate:glyoxylate aminotransferase 1 re-routed glycolate processing to the chloroplast, resulting in photooxidative damage through H2O2 production. Our results reveal that dynamic light environments buffer plant growth and metabolism against photorespiratory perturbations.


Subject(s)
Hydrogen Peroxide , Photosynthesis , Hydrogen Peroxide/metabolism , Plants/metabolism , Chloroplasts/metabolism , Plant Development , Light , Carbon Dioxide/metabolism
6.
Plant Physiol ; 193(3): 1970-1986, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37555435

ABSTRACT

The initial step of oxygenic photosynthesis is the thermodynamically challenging extraction of electrons from water and the release of molecular oxygen. This light-driven process, which is the basis for most life on Earth, is catalyzed by photosystem II (PSII) within the thylakoid membrane of photosynthetic organisms. The biogenesis of PSII requires a controlled step-wise assembly process of which the early steps are considered to be highly conserved between plants and their cyanobacterial progenitors. This assembly process involves auxiliary proteins, which are likewise conserved. In the present work, we used Arabidopsis (Arabidopsis thaliana) as a model to show that in plants, a eukaryote-exclusive assembly factor facilitates the early assembly step, during which the intrinsic antenna protein CP47 becomes associated with the PSII reaction center (RC) to form the RC47 intermediate. This factor, which we named DECREASED ELECTRON TRANSPORT AT PSII (DEAP2), works in concert with the conserved PHOTOSYNTHESIS AFFECTED MUTANT 68 (PAM68) assembly factor. The deap2 and pam68 mutants showed similar defects in PSII accumulation and assembly of the RC47 intermediate. The combined lack of both proteins resulted in a loss of functional PSII and the inability of plants to grow photoautotrophically on the soil. While overexpression of DEAP2 partially rescued the pam68 PSII accumulation phenotype, this effect was not reciprocal. DEAP2 accumulated at 20-fold higher levels than PAM68, together suggesting that both proteins have distinct functions. In summary, our results uncover eukaryotic adjustments to the PSII assembly process, which involve the addition of DEAP2 for the rapid progression from RC to RC47.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Eukaryota/metabolism , Photosynthesis , Plants/metabolism
7.
New Phytol ; 237(1): 160-176, 2023 01.
Article in English | MEDLINE | ID: mdl-36378135

ABSTRACT

Understanding photosynthesis in natural, dynamic light environments requires knowledge of long-term acclimation, short-term responses, and their mechanistic interactions. To approach the latter, we systematically determined and characterized light-environmental effects on thylakoid ion transport-mediated short-term responses during light fluctuations. For this, Arabidopsis thaliana wild-type and mutants of the Cl- channel VCCN1 and the K+ exchange antiporter KEA3 were grown under eight different light environments and characterized for photosynthesis-associated parameters and factors in steady state and during light fluctuations. For a detailed characterization of selected light conditions, we monitored ion flux dynamics at unprecedented high temporal resolution by a modified spectroscopy approach. Our analyses reveal that daily light intensity sculpts photosynthetic capacity as a main acclimatory driver with positive and negative effects on the function of KEA3 and VCCN1 during high-light phases, respectively. Fluctuations in light intensity boost the accumulation of the photoprotective pigment zeaxanthin (Zx). We show that KEA3 suppresses Zx accumulation during the day, which together with its direct proton transport activity accelerates photosynthetic transition to lower light intensities. In summary, both light-environment factors, intensity and variability, modulate the function of thylakoid ion transport in dynamic photosynthesis with distinct effects on lumen pH, Zx accumulation, photoprotection, and photosynthetic efficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Thylakoids/metabolism , Arabidopsis Proteins/metabolism , Photosynthesis/physiology , Light , Acclimatization , Ion Transport
8.
Plant Direct ; 6(7): e429, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35875836

ABSTRACT

In nature, plants experience rapid changes in light intensity and quality throughout the day. To maximize growth, they have established molecular mechanisms to optimize photosynthetic output while protecting components of the light-dependent reaction and CO2 fixation pathways. Plant phenotyping of mutant collections has become a powerful tool to unveil the genetic loci involved in environmental acclimation. Here, we describe the phenotyping of the transfer-DNA (T-DNA) insertion mutant line SALK_008491, previously known as nhd1-1. Growth in a fluctuating light regime caused a loss in growth rate accompanied by a spike in photosystem (PS) II damage and increased non-photochemical quenching (NPQ). Interestingly, an independent nhd1 null allele did not recapitulate the NPQ phenotype. Through bulk sequencing of a backcrossed segregating F2 pool, we identified an ~14-kb large deletion on chromosome 3 (Chr3) in SALK_008491 affecting five genes upstream of NHD1. Besides NHD1, which encodes for a putative plastid Na+/H+ antiporter, the stromal NAD-dependent D-3-phosphoglycerate dehydrogenase 3 (PGDH3) locus was eradicated. Although some changes in the SALK_008491 mutant's photosynthesis can be assigned to the loss of PGDH3, our follow-up studies employing respective single mutants and complementation with overlapping transformation-competent artificial chromosome (TAC) vectors reveal that the exacerbated fluctuating light sensitivity in SALK_008491 mutants result from the simultaneous loss of PGDH3 and NHD1. Altogether, the data obtained from this large deletion-carrying mutant provide new and unintuitive insights into the molecular mechanisms that function to protect the photosynthetic machinery. Moreover, our study renews calls for caution when setting up reverse genetic studies using T-DNA lines. Although second-site insertions, indels, and SNPs have been reported before, large deletion surrounding the insertion site causes yet another problem. Nevertheless, as shown through this research, such unpredictable genetic events following T-DNA mutagenesis can provide unintuitive insights that allow for understanding complex phenomena such as the plant acclimation to dynamic high light stress.

10.
Plant Physiol ; 186(1): 142-167, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33779763

ABSTRACT

During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , NAD , Phosphoglycerate Dehydrogenase , Photosynthesis , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , NAD/metabolism , Phosphoglycerate Dehydrogenase/metabolism
11.
Plant Physiol ; 187(4): 2209-2229, 2021 12 04.
Article in English | MEDLINE | ID: mdl-33742682

ABSTRACT

During photosynthesis, energy is transiently stored as an electrochemical proton gradient across the thylakoid membrane. The resulting proton motive force (pmf) is composed of a membrane potential (ΔΨ) and a proton concentration gradient (ΔpH) and powers the synthesis of ATP. Light energy availability for photosynthesis can change very rapidly and frequently in nature. Thylakoid ion transport proteins buffer the effects that light fluctuations have on photosynthesis by adjusting pmf and its composition. Ion channel activities dissipate ΔΨ, thereby reducing charge recombinations within photosystem II. The dissipation of ΔΨ allows for increased accumulation of protons in the thylakoid lumen, generating the signal that activates feedback downregulation of photosynthesis. Proton export from the lumen via the thylakoid K+ exchange antiporter 3 (KEA3), instead, decreases the ΔpH fraction of the pmf and thereby reduces the regulatory feedback signal. Here, we reveal that the Arabidopsis (Arabidopsis thaliana) KEA3 protein homo-dimerizes via its C-terminal domain. This C-terminus has a regulatory function, which responds to light intensity transients. Plants carrying a C-terminus-less KEA3 variant show reduced feed-back downregulation of photosynthesis and suffer from increased photosystem damage under long-term high light stress. However, during photosynthetic induction in high light, KEA3 deregulation leads to an increase in carbon fixation rates. Together, the data reveal a trade-off between long-term photoprotection and a short-term boost in carbon fixation rates, which is under the control of the KEA3 C-terminus.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Potassium-Hydrogen Antiporters/metabolism , Thylakoids/metabolism
12.
Nat Plants ; 6(8): 1031-1043, 2020 08.
Article in English | MEDLINE | ID: mdl-32719473

ABSTRACT

The unparalleled performance of Chlorella ohadii under irradiances of twice full sunlight underlines the gaps in our understanding of how the photosynthetic machinery operates, and what sets its upper functional limit. Rather than succumbing to photodamage under extreme irradiance, unique features of photosystem II function allow C. ohadii to maintain high rates of photosynthesis and growth, accompanied by major changes in composition and cellular structure. This remarkable resilience allowed us to investigate the systems response of photosynthesis and growth to extreme illumination in a metabolically active cell. Using redox proteomics, transcriptomics, metabolomics and lipidomics, we explored the cellular mechanisms that promote dissipation of excess redox energy, protein S-glutathionylation, inorganic carbon concentration, lipid and starch accumulation, and thylakoid stacking. C. ohadii possesses a readily available capacity to utilize a sudden excess of reducing power and carbon for growth and reserve formation, and post-translational redox regulation plays a pivotal role in this rapid response. Frequently the response in C. ohadii deviated from that of model species, reflecting its life history in desert sand crusts. Comparative global and case-specific analyses provided insights into the potential evolutionary role of effective reductant utilization in this extreme resistance of C. ohadii to extreme irradiation.


Subject(s)
Chlorella/metabolism , Algal Proteins/metabolism , Algal Proteins/physiology , Chlorella/physiology , Chlorella/radiation effects , Desert Climate , Gene Expression Profiling , Lipidomics , Metabolomics , Oxidation-Reduction/radiation effects , Photosynthesis , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/physiology , Proteomics
14.
Proc Natl Acad Sci U S A ; 117(16): 9101-9111, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32245810

ABSTRACT

In eukaryotic photosynthetic organisms, the conversion of solar into chemical energy occurs in thylakoid membranes in the chloroplast. How thylakoid membranes are formed and maintained is poorly understood. However, previous observations of vesicles adjacent to the stromal side of the inner envelope membrane of the chloroplast suggest a possible role of membrane transport via vesicle trafficking from the inner envelope to the thylakoids. Here we show that the model plant Arabidopsis thaliana has a chloroplast-localized Sec14-like protein (CPSFL1) that is necessary for photoautotrophic growth and vesicle formation at the inner envelope membrane of the chloroplast. The cpsfl1 mutants are seedling lethal, show a defect in thylakoid structure, and lack chloroplast vesicles. Sec14 domain proteins are found only in eukaryotes and have been well characterized in yeast, where they regulate vesicle budding at the trans-Golgi network. Like the yeast Sec14p, CPSFL1 binds phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA) and acts as a phosphatidylinositol transfer protein in vitro, and expression of Arabidopsis CPSFL1 can complement the yeast sec14 mutation. CPSFL1 can transfer PIP into PA-rich membrane bilayers in vitro, suggesting that CPSFL1 potentially facilitates vesicle formation by trafficking PA and/or PIP, known regulators of membrane trafficking between organellar subcompartments. These results underscore the role of vesicles in thylakoid biogenesis and/or maintenance. CPSFL1 appears to be an example of a eukaryotic cytosolic protein that has been coopted for a function in the chloroplast, an organelle derived from endosymbiosis of a cyanobacterium.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Phospholipid Transfer Proteins/metabolism , Photosynthesis , Thylakoids/metabolism , Arabidopsis Proteins/genetics , Chloroplast Proteins , Microscopy, Electron, Transmission , Mutation , Phosphatidic Acids/metabolism , Phosphatidylinositol Phosphates/metabolism , Phospholipid Transfer Proteins/genetics , Plants, Genetically Modified , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Seedlings , Sequence Homology, Amino Acid , Thylakoids/ultrastructure
15.
Plants (Basel) ; 9(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138234

ABSTRACT

The capacity of photoautotrophs to fix carbon depends on the efficiency of the conversion of light energy into chemical potential by photosynthesis. In nature, light input into photosynthesis can change very rapidly and dramatically. To analyze how genetic variation in Arabidopsis thaliana affects photosynthesis and growth under dynamic light conditions, 36 randomly chosen natural accessions were grown under uniform and fluctuating light intensities. After 14 days of growth under uniform or fluctuating light regimes, maximum photosystem II quantum efficiency (Fv/Fm) was determined, photosystem II operating efficiency (ΦPSII) and non-photochemical quenching (NPQ) were measured in low light, and projected leaf area (PLA) as well as the number of visible leaves were estimated. Our data show that ΦPSII and PLA were decreased and NPQ was increased, while Fv/Fm and number of visible leaves were unaffected, in most accessions grown under fluctuating compared to uniform light. There were large changes between accessions for most of these parameters, which, however, were not correlated with genomic variation. Fast growing accessions under uniform light showed the largest growth reductions under fluctuating light, which correlated strongly with a reduction in ΦPSII, suggesting that, under fluctuating light, photosynthesis controls growth and not vice versa.

16.
Plants (Basel) ; 9(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138306

ABSTRACT

The capacity of photoautotrophs to fix carbon depends on the efficiency of the conversion of light energy into chemical potential by photosynthesis. In nature, light input into photosynthesis can change very rapidly and dramatically. To analyze how genetic variation in Arabidopsis thaliana affects photosynthesis and growth under dynamic light conditions, 36 randomly chosen natural accessions were grown under uniform and fluctuating light intensities. After 14 days of growth under uniform or fluctuating light regimes, maximum photosystem II quantum efficiency (Fv/Fm) was determined, photosystem II operating efficiency (ΦPSII) and non-photochemical quenching (NPQ) were measured in low light, and projected leaf area (PLA) as well as the number of visible leaves were estimated. Our data show that ΦPSII and PLA were decreased and NPQ was increased, while Fv/Fm and number of visible leaves were unaffected, in most accessions grown under fluctuating compared to uniform light. There were large changes between accessions for most of these parameters, which, however, were not correlated with genomic variation. Fast growing accessions under uniform light showed the largest growth reductions under fluctuating light, which correlated strongly with a reduction in ΦPSII, suggesting that, under fluctuating light, photosynthesis controls growth and not vice versa.

17.
Plant Physiol ; 182(4): 2126-2142, 2020 04.
Article in English | MEDLINE | ID: mdl-32041909

ABSTRACT

The composition of the thylakoid proton motive force (pmf) is regulated by thylakoid ion transport. Passive ion channels in the thylakoid membrane dissipate the membrane potential (Δψ) component to allow for a higher fraction of pmf stored as a proton concentration gradient (ΔpH). K+/H+ antiport across the thylakoid membrane via K+ EXCHANGE ANTIPORTER3 (KEA3) instead reduces the ΔpH fraction of the pmf. Thereby, KEA3 decreases nonphotochemical quenching (NPQ), thus allowing for higher light use efficiency, which is particularly important during transitions from high to low light. Here, we show that in the background of the Arabidopsis (Arabidopsis thaliana) chloroplast (cp)ATP synthase assembly mutant cgl160, with decreased cpATP synthase activity and increased pmf amplitude, KEA3 plays an important role for photosynthesis and plant growth under steady-state conditions. By comparing cgl160 single with cgl160 kea3 double mutants, we demonstrate that in the cgl160 background loss of KEA3 causes a strong growth penalty. This is due to a reduced photosynthetic capacity of cgl160 kea3 mutants, as these plants have a lower lumenal pH than cgl160 mutants, and thus show substantially increased pH-dependent NPQ and decreased electron transport through the cytochrome b 6 f complex. Overexpression of KEA3 in the cgl160 background reduces pH-dependent NPQ and increases photosystem II efficiency. Taken together, our data provide evidence that under conditions where cpATP synthase activity is low, a KEA3-dependent reduction of ΔpH benefits photosynthesis and growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplast Proton-Translocating ATPases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplast Proton-Translocating ATPases/genetics , Hydrogen-Ion Concentration , Photosynthesis/genetics , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Potassium-Hydrogen Antiporters/genetics , Potassium-Hydrogen Antiporters/metabolism , Thylakoid Membrane Proteins/genetics , Thylakoid Membrane Proteins/metabolism , Thylakoids/metabolism
18.
Biochem J ; 476(19): 2725-2741, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31654058

ABSTRACT

In nature, light availability for photosynthesis can undergo massive changes on a very short timescale. Photosynthesis in such dynamic light environments requires that plants can respond swiftly. Expanding our knowledge of the rapid responses that underlie dynamic photosynthesis is an important endeavor: it provides insights into nature's design of a highly dynamic energy conversion system and hereby can open up new strategies for improving photosynthesis in the field. The present review focuses on three processes that have previously been identified as promising engineering targets for enhancing crop yield by accelerating dynamic photosynthesis, all three of them involving or being linked to processes in the chloroplast, i.e. relaxation of non-photochemical quenching, Calvin-Benson-Bassham cycle enzyme activation/deactivation and dynamics of stomatal conductance. We dissect these three processes on the functional and molecular level to reveal gaps in our understanding and critically discuss current strategies to improve photosynthesis in the field.


Subject(s)
Chloroplasts/metabolism , Photosynthesis/physiology , Plants/metabolism , Environment , Light , Plants/radiation effects
19.
Plant Physiol ; 180(3): 1322-1335, 2019 07.
Article in English | MEDLINE | ID: mdl-31053658

ABSTRACT

Photosynthesis is limited by the slow relaxation of nonphotochemical quenching, which primarily dissipates excess absorbed light energy as heat. Because the heat dissipation process is proportional to light-driven thylakoid lumen acidification, manipulating thylakoid ion and proton flux via transport proteins could improve photosynthesis. However, an important aspect of the current understanding of the thylakoid ion transportome is inaccurate. Using fluorescent protein fusions, we show that the Arabidopsis (Arabidopsis thaliana) two-pore K+ channel TPK3, which had been reported to mediate thylakoid K+ flux, localizes to the tonoplast, not the thylakoid. The localization of TPK3 outside of the thylakoids is further supported by the absence of TPK3 in isolated thylakoids as well as the inability of isolated chloroplasts to import TPK3 protein. In line with the subcellular localization of TPK3 in the vacuole, we observed that photosynthesis in the Arabidopsis null mutant tpk3-1, which carries a transfer DNA insertion in the first exon, remains unaffected. To gain a comprehensive understanding of how thylakoid ion flux impacts photosynthetic efficiency under dynamic growth light regimes, we performed long-term photosynthesis imaging of established and newly isolated transthylakoid K+- and Cl--flux mutants. Our results underpin the importance of the thylakoid ion transport proteins potassium cation efflux antiporter KEA3 and voltage-dependent chloride channel VCCN1 and suggest that the activity of yet unknown K+ channel(s), but not TPK3, is critical for optimal photosynthesis in dynamic light environments.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Photosynthesis/physiology , Potassium Channels, Tandem Pore Domain/metabolism , Vacuoles/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ion Transport/genetics , Ion Transport/radiation effects , Light , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Mutation , Photosynthesis/genetics , Photosynthesis/radiation effects , Plants, Genetically Modified , Potassium/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Thylakoids/metabolism
20.
Curr Opin Plant Biol ; 37: 56-62, 2017 06.
Article in English | MEDLINE | ID: mdl-28426975

ABSTRACT

Plants use sunlight as their primary energy source. During photosynthesis, absorbed light energy generates reducing power by driving electron transfer reactions. These are coupled to the transfer of protons into the thylakoid lumen, generating a proton motive force (pmf) required for ATP synthesis. Sudden alterations in light availability have to be met by regulatory mechanisms to avoid the over-accumulation of reactive intermediates and maximize energy efficiency. Here, the acidification of the lumen, as an intermediate product of photosynthesis, plays an important role by regulating photosynthesis in response to excitation energy levels. Recent findings reveal pmf regulation and the modulation of its composition as key determinants for efficient photosynthesis, plant growth, and survival in fluctuating light environments.


Subject(s)
Chloroplasts/metabolism , Light , Proton-Motive Force/physiology , Arabidopsis/metabolism , Arabidopsis/radiation effects , Chloroplasts/radiation effects , Electron Transport/physiology , Electron Transport/radiation effects , Photosynthesis/physiology , Photosynthesis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL