Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Epigenetics Chromatin ; 16(1): 19, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37202802

ABSTRACT

BACKGROUND: Patients with balanced X-autosome translocations and premature ovarian insufficiency (POI) constitute an interesting paradigm to study the effect of chromosome repositioning. Their breakpoints are clustered within cytobands Xq13-Xq21, 80% of them in Xq21, and usually, no gene disruption can be associated with POI phenotype. As deletions within Xq21 do not cause POI, and since different breakpoints and translocations with different autosomes lead to this same gonadal phenotype, a "position effect" is hypothesized as a possible mechanism underlying POI pathogenesis. OBJECTIVE AND METHODS: To study the effect of the balanced X-autosome translocations that result in POI, we fine-mapped the breakpoints in six patients with POI and balanced X-autosome translocations and addressed gene expression and chromatin accessibility changes in four of them. RESULTS: We observed differential expression in 85 coding genes, associated with protein regulation, multicellular regulation, integrin signaling, and immune response pathways, and 120 differential peaks for the three interrogated histone marks, most of which were mapped in high-activity chromatin state regions. The integrative analysis between transcriptome and chromatin data pointed to 12 peaks mapped less than 2 Mb from 11 differentially expressed genes in genomic regions not related to the patients' chromosomal rearrangement, suggesting that translocations have broad effects on the chromatin structure. CONCLUSION: Since a wide impact on gene regulation was observed in patients, our results observed in this study support the hypothesis of position effect as a pathogenic mechanism for premature ovarian insufficiency associated with X-autosome translocations. This work emphasizes the relevance of chromatin changes in structural variation, since it advances our knowledge of the impact of perturbations in the regulatory landscape within interphase nuclei, resulting in the position effect pathogenicity.


Subject(s)
Primary Ovarian Insufficiency , Female , Humans , Primary Ovarian Insufficiency/genetics , Translocation, Genetic , Gene Expression Regulation , Gene Expression , Chromatin
2.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36297306

ABSTRACT

Adipose tissue (AT) secretes adipokines, modulators of low-grade chronic inflammation in obesity. Molecules that induce the emergence of new and functional adipocytes in AT can alleviate or prevent inflammatory and metabolic disorders. The objective of this study was to investigate the role of palmitoleic acid (n7) in 3T3-L1 and primary pre-adipocyte differentiation and AT inflammation. C57BL/6j mice were submitted to a control or high-fat diet (HFD) for 8 weeks, and treated with n7 for 4 weeks. Mice consuming a HFD presented an increase in body weight, epididymal (Epi) fat mass, and Epi adipocytes size. N7 treatment attenuated the body weight gain and completely prevented the hypertrophy of Epi adipocytes, but not the increment in Epi mass induced by the HFD, suggesting a greater adipocytes hyperplasia in animals treated with n7. It was agreed that n7 increased 3T3-L1 proliferation and differentiation, as well as the expression of genes involved in adipogenesis, such as Cebpa, Pparg, aP2, Perilipin, and Scl2a4. Furthermore, n7 decreased the inflammatory cytokines Mcp1, Tnfa, Il6, Cxcl10, and Nos2 genes in Epi vascular stromal cells, but not in the whole AT. These findings show that n7 exerts anti-hypertrophic effects in adipocytes which influence the surrounding cells by attenuating the overexpression of pro-inflammatory cytokines triggered by a HFD.

3.
Obesity (Silver Spring) ; 30(10): 1995-2004, 2022 10.
Article in English | MEDLINE | ID: mdl-36062886

ABSTRACT

OBJECTIVE: The study goal was to analyze the effects of a high-fat diet (HFD) on the histone 3 lysine 27 (H3K27) posttranscriptional modifications and the expression of histone-modifying enzymes in adipose-derived stromal cells (ASCs) from white adipose tissue (WAT). METHODS: Male C57BL/6J mice received control or HFD for 12 weeks. The ASCs were isolated from subcutaneous and visceral (epididymal) WAT, cultivated, and evaluated for expression of H3K27 trimethylation (H3K27me3) and H3K27 acetylation (H3K27ac) by Western blot. The transcription of histone-modifying enzymes was analyzed by real-time polymerase chain reaction. RESULTS: When compared with control, HFD ASCs showed a decrease in H3K27ac enrichment in subcutaneous and visceral WAT and ATP-citrate lyase expression in subcutaneous WAT. Curiously, the expression of CREB-binding protein was increased in visceral ASCs from HFD-fed mice. CONCLUSIONS: These results show that an HFD significantly reduces acetylation of H3K27 in ASCs and the expression of ATP-citrate lyase in subcutaneous ASCs, suggesting that, in this fat depot, the H3K27ac reduction could be partly due to lower acetyl-coenzyme A availability. H3K27ac is an epigenetic mark responsible for increasing the transcription rate and its reduction can have an important impact on ASC proliferation and differentiation potential.


Subject(s)
Diet, High-Fat , Histones , Acetylation , Adenosine Triphosphate , Animals , CREB-Binding Protein/metabolism , Coenzyme A/metabolism , Histones/metabolism , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Stromal Cells/metabolism
4.
Nutrients ; 13(2)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671850

ABSTRACT

The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n-3 PUFA in adipose cells' proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals' body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n-3 PUFA. After submitting the in vitro treated (n-3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n-3 PUFA treated group. We conclude that n-3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.


Subject(s)
Adipogenesis/drug effects , Fatty Acids, Omega-3/pharmacology , Fish Oils/pharmacology , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/therapy , 3T3-L1 Cells , Adipocytes/drug effects , Adipose Tissue, White/drug effects , Adiposity/drug effects , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications
5.
Nutrients ; 13(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652751

ABSTRACT

This study aimed to investigate the effects of two commercially available fish oils (FOs) containing different proportions of two omega-3 fatty acids (FA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the metabolic and endocrine dysfunctions of white adipose tissue resulting from obesity. Male C57BL/6J mice, 8 weeks old, received a control or high-fat diet (CO and HF groups, with 9% and 59% energy from fat, respectively) for 8 weeks. The next 8 weeks, the HF group was subdivided into HF, HF+FO/E (HF+5:1 EPA:DHA), and HF+FO/D (HF+5:1 DHA:EPA). Supplementation was performed by gavage, three times a week. All groups that received the HF diet had lower food and caloric intake, but a higher fat intake, body weight (BW) gain, glucose intolerance, and a significant increase in inguinal (ING), retroperitoneal (RP), and epididymal (EPI) adipose tissues when compared to the CO group. Additionally, HF and HF+FO/D groups showed insulin resistance, adipocyte hypertrophy, increased lipolysis and secretion of TNF-α, resistin and IL-10 adipokines by ING and RP adipocytes, and adiponectin only by the HF+FO/D group in ING adipocytes. All of these effects were completely reversed in the HF+FO/E group, which also showed partial reversion in BW gain and glucose intolerance. Both the HF+FO/E and HF+FO/D groups showed a reduction in ING and RP adipose depots when compared to the HF group, but only HF+FO/E in the EPI depot. HF+FO/E, but not HF+FO/D, was able to prevent the changes triggered by obesity in TNF-α, Il-10, and resistin secretion in ING and RP depots. These results strongly suggest that different EPA:DHA ratios have different impacts on the adipose tissue metabolism, FO being rich in EPA, but not in DHA, and effective in reversing the changes induced by obesity.


Subject(s)
Eicosapentaenoic Acid/pharmacology , Fish Oils/pharmacology , Food, Fortified , Metabolic Syndrome/therapy , Obesity/therapy , Adipocytes/drug effects , Adipose Tissue/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Insulin Resistance/physiology , Male , Metabolic Syndrome/complications , Metabolic Syndrome/physiopathology , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/complications , Obesity/physiopathology , Weight Gain/drug effects
6.
Front Endocrinol (Lausanne) ; 11: 537061, 2020.
Article in English | MEDLINE | ID: mdl-33117273

ABSTRACT

We recently demonstrated that palmitoleic acid (C16:1n7), a monounsaturated fatty acid, increases the metabolic and oxidative capacity of 3T3-L1 adipocytes. Herein, the effect of 16:1n7 supplementation on metabolic parameters on white adipose tissue (WAT) and liver of obese mice induced by a high-fat diet (HFD) was addressed by analyzing metabolic (dys)function and altered genes expression in adipose tissue, as well as liver and serum biochemistry analysis. For this purpose, mice were induced to obesity for 8 weeks, and from the 5th week, they received 16:1n7 (300 mg/kg per day) or water for 30 days, by gavage. Subcutaneous inguinal (ING) and epididymal (EPI) WAT were removed for analysis of metabolic, (anti)inflammatory, adipogenic, and thermogenic genes expression by real-time reverse transcriptase-polymerase chain reaction. Additionally, metabolic activities of isolated adipocytes, such as glucose uptake, lipogenesis (triacylglycerol esterification), ß-oxidation, and lipolysis in ING adipocytes, were also assessed. Despite the higher fat intake, the HFD group showed lower food intake but higher body weight, increased glucose, significant dyslipidemia, and increased liver and adipose depot mass, accompanied by liver steatosis. The 16:1n7 supplementation slowed down the body mass gain and prevented the increase of lipids in the liver. HFD+n7 animals presented increased fatty acid oxidation and lipogenesis compared to control, but no effect was observed on lipolysis and glucose uptake in ING isolated adipocytes. Besides, 16:1n7 increased the content of the mRNA encoding FABP4, but partially prevented the expression of genes encoding ATGL, HSL, perilipin, lipin, C/EBP-α, PPAR-γ, C/EBP-ß, CPT1, NRF1, TFAM, PRDM16, and nitric oxide synthase 2 in ING depot from HFD group of animals. Finally, HFD increased Mcp1 and Tnfα expression, and 16:1n7 promoted a more marked increase in it. In summary, the data show that palmitoleic acid promotes metabolic changes and partially prevents the increase in gene expression on adipocytes triggered by obesity, suggesting that HFD+n7 animals do not require the same magnitude of metabolic adaptation to cope with energy demand from the HFD. In the long term, the effects of 16:1n7 may be more evident and beneficial for the function/dysfunction of WAT from an obese organism, with relevant repercussions in the systemic metabolic homeostasis.


Subject(s)
Adipose Tissue/drug effects , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids/metabolism , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose , Cholesterol/blood , Fatty Acids, Monounsaturated/therapeutic use , Lipolysis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/blood
7.
Mol Cell Neurosci ; 105: 103494, 2020 06.
Article in English | MEDLINE | ID: mdl-32387751

ABSTRACT

Long interspersed nuclear elements-1 (LINE-1) are mobile DNA elements that comprise the majority of interspersed repeats in the mammalian genome. During the last decade, these transposable sequences have been described as controlling elements involved in transcriptional regulation and genome plasticity. Recently, LINE-1 have been implicated in neurogenesis, but to date little is known about their nuclear organization in neurons. The olfactory epithelium is a site of continuous neurogenesis, and loci of olfactory receptor genes are enriched in LINE-1 copies. Olfactory neurons have a unique inverted nuclear architecture and constitutive heterochromatin forms a block in the center of the nuclei. Our DNA FISH images show that, even though LINE-1 copies are dispersed throughout the mice genome, they are clustered forming a cap around the central heterochromatin block and frequently occupy the same position as facultative heterochromatin in olfactory neurons nuclei. This specific LINE-1 organization could not be observed in other olfactory epithelium cell types. Analyses of H3K27me3 and H3K9me3 ChIP-seq data from olfactory epithelium revealed that LINE-1 copies located at OR gene loci show different enrichment for these heterochromatin marks. We also found that LINE-1 are transcribed in mouse olfactory epithelium. These results suggest that LINE-1 play a role in the olfactory neurons' nuclear architecture. SIGNIFICANCE STATEMENT: LINE-1 are mobile DNA elements and comprise almost 20% of mice and human genomes. These retrotransposons have been implicated in neurogenesis. We show for the first time that LINE-1 retrotransposons have a specific nuclear organization in olfactory neurons, forming aggregates concentric to the heterochromatin block and frequently occupying the same region as facultative heterochromatin. We found that LINE-1 at olfactory receptor gene loci are differently enriched for H3K9me3 and H3K27me3, but LINE-1 transcripts could be detected in the olfactory epithelium. We speculate that these retrotransposons play an active role in olfactory neurons' nuclear architecture.


Subject(s)
Long Interspersed Nucleotide Elements/physiology , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism , Animals , Cell Nucleus/metabolism , Gene Expression Regulation/physiology , Heterochromatin/metabolism , Histones/metabolism , Male , Mice, Inbred C57BL , Receptors, Odorant/genetics
8.
PLoS One ; 14(6): e0217941, 2019.
Article in English | MEDLINE | ID: mdl-31181099

ABSTRACT

During epigenetic reprogramming germ cells activate alternative mechanisms to maintain the repression retrotransposons. This mechanism involves the recruitment of genome defence proteins such as MAEL, PIWIL4 and TDRD9, which associate with piRNAs and promote Line-1 silencing. MAEL, PIWIL4 and TDRD9 form the piP-bodies, which organization and dynamics vary according to the stage of germ cell epigenetic reprogramming. Although these data have been well documented in mice, it is not known how this mechanism operates in the rat. Thus, the aim of this study was to describe the distribution and interaction of MAEL, PIWIL4, TDRD9 and DAZL during rat germ cell development and check whether specific localization of these proteins is related to the distribution of Line-1 aggregates. Rat embryo gonads at 15 days post-conception (dpc), 16dpc and 19dpc were submitted to MAEL, PIWIL4, TDRD9 and DAZL immunolabelling. The gonads of 19dpc embryos were submitted to the double-labelling of MAEL/DAZL, TDRD9/MAEL and PIWIL4/MAEL. The 19dpc gonads were submitted to co-immunoprecipitation assays and fluorescent in situ hybridization for Line-1 detection. MAEL and TDRD9 showed very similar localization at all ages, whereas DAZL and PIWIL4 showed specific distribution, with PIWIL4 showing shuttling from the nucleus to the cytoplasm by the end epigenetic reprogramming. In quiescent 19dpc gonocytes all proteins colocalized in a nuage adjacent to the nucleus. DAZL interacts with PIWIL4 and MAEL, suggesting that DAZL acts with these proteins to repress Line-1. TDRD9, however, does not interact with DAZL or MAEL despite their colocalization. Line-1 aggregates were detected predominantly in the nuclear periphery, although did not show homogeneous distribution as observed for the nuage. In conclusion, the nuage in quiescent rat gonocytes show a very distinguished organization that might be related to the organization of Line-1 clusters and describe the association of DAZL with proteins responsible for Line-1 repression.


Subject(s)
Cellular Reprogramming , Cellular Senescence , Germ Cells/metabolism , Animals , Cell Nucleus/metabolism , Cell Proliferation , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Germ Cells/cytology , Gonads/metabolism , Male , Protein Binding , RNA-Binding Proteins/metabolism , Rats/embryology , Rats/metabolism
10.
J Agric Food Chem ; 66(10): 2214-2218, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-28054485

ABSTRACT

Olfactory perception plays an important role in food flavor. Humans have around 400 odorant receptors (ORs), which can be activated by an enormous number of odorants in a combinatorial fashion. To date, only a few odorant receptors have been linked to their respective odorants, due to the difficulties in expressing these receptor proteins in heterologous cell systems. In vivo approaches allow for the analysis of odorant-receptor interactions in their native environment and have the advantage that the complete OR repertoire is simultaneously tested. Once mouse odorant-receptor pairs are defined, one can search for the corresponding human orthologues, which can be validated against the odorants in heterologous cells. Thus, the combination of in vivo and in vitro methods should contribute to the identification of human ORs that recognize odorants of interest, such as key food odorants.


Subject(s)
Odorants/analysis , Olfactory Perception , Receptors, Odorant/metabolism , Animals , Food Analysis , Humans , Mice , Receptors, Odorant/genetics , Smell
11.
Mol Pharmacol ; 90(5): 633-639, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27587538

ABSTRACT

Odorant receptors (ORs) belong to a large gene family of rhodopsin-like G protein-coupled receptors (GPCRs). The mouse OR gene family is composed of ∼1000 OR genes, and the human OR gene family is composed of ∼400 OR genes. The OR genes are spread throughout the genome, and can be found in clusters or as solitary genes in almost all chromosomes. These chemosensory GPCRs are expressed in highly specialized cells, the olfactory sensory neurons of the nose. Each one of these neurons expresses a single OR gene out of the complete repertoire of genes. In addition, only one of the two homologous alleles of the chosen OR gene, the maternal or the paternal, is expressed per neuron. Here we review recent findings that help to elucidate the mechanisms underlying monogenic and monoallelic expression of OR genes.


Subject(s)
Alleles , Gene Expression Regulation , Receptors, Odorant/genetics , Animals , Humans , Models, Genetic , Receptors, Odorant/metabolism
12.
Proc Natl Acad Sci U S A ; 111(7): 2782-7, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24550308

ABSTRACT

Odorants are detected by odorant receptors, which are located on olfactory sensory neurons of the nose. Each olfactory sensory neuron expresses one single odorant receptor gene allele from a large family of odorant receptor genes. To gain insight into the mechanisms underlying this monogenic and monoallelic expression, we examined the 3D nuclear organization of olfactory sensory neurons and determined the positions of homologous odorant receptor gene alleles in relation to different nuclear compartments. Our results show that olfactory neurons exhibit a singular nuclear architecture that is characterized by a large centrally localized constitutive heterochromatin block and by the presence of prominent facultative heterochromatin domains that are localized around this constitutive heterochromatin block. We also found that the two homologous alleles of a given odorant receptor gene are frequently segregated to separate compartments in the nucleus, with one of the alleles localized to the constitutive heterochromatin block and the other one localized to the more plastic facultative heterochromatin, or next to it. Our findings suggest that this nuclear compartmentalization may play a critical role in the expression of odorant receptor genes.


Subject(s)
Alleles , Cell Nucleus/ultrastructure , Gene Expression Regulation/genetics , Heterochromatin/metabolism , Olfactory Receptor Neurons/cytology , Receptors, Odorant/genetics , Animals , Cell Nucleus/genetics , Chromosomes, Artificial, Bacterial , Imaging, Three-Dimensional , In Situ Hybridization, Fluorescence , Mice
13.
Bioarchitecture ; 4(4-5): 160-3, 2014.
Article in English | MEDLINE | ID: mdl-25714005

ABSTRACT

Odorants are discriminated by hundreds of odorant receptor (OR) genes, which are dispersed throughout the mammalian genome. The OR genes are expressed in a highly specialized type of cell, the olfactory sensory neuron. Each one of these neurons expresses one of the 2 alleles from one single OR gene type. The mechanisms underlying OR gene expression are unclear. Here we describe recent work demonstrating that the olfactory sensory neuron shows a particular nuclear architecture, and that the genomic OR loci are colocalized in silencing heterochromatin compartments within the nucleus. These discoveries highlight the important role played by epigenetic modifications and nuclear genome organization in the regulation of OR gene expression.


Subject(s)
Alleles , Cell Nucleus/ultrastructure , Gene Expression Regulation/genetics , Heterochromatin/metabolism , Olfactory Receptor Neurons/cytology , Receptors, Odorant/genetics , Animals
14.
PLoS One ; 6(12): e29065, 2011.
Article in English | MEDLINE | ID: mdl-22216168

ABSTRACT

In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions.We conducted a comparative analysis of promoter regions of 39 mouse V1R genes and found motifs that are common to a large number of promoters. We then searched mouse OR promoter regions for motifs that resemble the ones found in the V1R promoters. We identified motifs that are present in both the V1R and OR promoter regions. Some of these motifs correspond to the known O/E like binding sites while others resemble binding sites for transcriptional repressors. We show that one of these motifs specifically interacts with proteins extracted from both nuclei from olfactory and vomeronasal neurons. Our study is the first to identify motifs that resemble binding sites for repressors in the promoters of OR and V1R genes. Analysis of these motifs and of the proteins that bind to these motifs should reveal important aspects of the mechanisms of OR/V1R gene regulation.


Subject(s)
Promoter Regions, Genetic , Receptors, Odorant/genetics , Vomeronasal Organ/metabolism , Amino Acid Sequence , Animals , DNA, Complementary , Gene Expression , Mice , Molecular Sequence Data , Neurons/metabolism , Sequence Homology, Amino Acid
15.
An Acad Bras Cienc ; 80(1): 167-77, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18345385

ABSTRACT

Collagen XVIII can generate two fragments, NC11-728 containing a frizzled motif which possibly acts in Wnt signaling and Endostatin, which is cleaved from the NC1 and is a potent inhibitor of angiogenesis. Collagen XVIII and Wnt signaling have recently been associated with adipogenic differentiation and obesity in some animal models, but not in humans. In the present report, we have shown that COL18A1 expression increases during human adipogenic differentiation. We also tested if polymorphisms in the Frizzled (c.1136C>T; Thr379Met) and Endostatin (c.4349G>A; Asp1437Asn) regions contribute towards susceptibility to obesity in patients with type 2 diabetes (113 obese, BMI > or =30; 232 non-obese, BMI < 30) of European ancestry. No evidence of association was observed between the allele c.4349G>A and obesity, but we observed a significantly higher frequency of homozygotes c.1136TT in obese (19.5%) than in non-obese individuals (10.9%) [P = 0.02; OR = 2.0 (95%CI: 1.07-3.73)], suggesting that the allele c.1136T is associated to obesity in a recessive model. This genotype, after controlling for cholesterol, LDL cholesterol, and triglycerides, was independently associated with obesity (P = 0.048), and increases the chance of obesity in 2.8 times. Therefore, our data suggest the involvement of collagen XVIII in human adipogenesis and susceptibility to obesity.


Subject(s)
Adipocytes/cytology , Adipogenesis/genetics , Collagen Type XVIII/genetics , Diabetes Mellitus, Type 2/genetics , Obesity/genetics , Adipocytes/metabolism , Case-Control Studies , Collagen Type XVIII/metabolism , Diabetes Mellitus, Type 2/metabolism , Endostatins/genetics , Endostatins/metabolism , Female , Gene Expression/genetics , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Obesity/metabolism , Polymerase Chain Reaction , Polymorphism, Genetic
16.
An. acad. bras. ciênc ; 80(1): 167-177, Mar. 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-477424

ABSTRACT

Collagen XVIII can generate two fragments, NC11-728 containing a frizzled motif which possibly acts in Wnt signaling and Endostatin, which is cleaved from the NC1 and is a potent inhibitor of angiogenesis. Collagen XVIII and Wnt signaling have recently been associated with adipogenic differentiation and obesity in some animal models, but not in humans. In the present report, we have shown that COL18A1 expression increases during human adipogenic differentiation. We also tested if polymorphisms in the Frizzled (c.1136C>T; Thr379Met) and Endostatin (c.4349G>A; Asp1437Asn) regions contribute towards susceptibility to obesity in patients with type 2 diabetes (113 obese, BMI =30; 232 non-obese, BMI < 30) of European ancestry. No evidence of association was observed between the allele c.4349G>A and obesity, but we observed a significantly higher frequency of homozygotes c.1136TT in obese (19.5 percent) than in non-obese individuals (10.9 percent) [P = 0.02; OR = 2.0 (95 percentCI: 1.07-3.73)], suggesting that the allele c.1136T is associated to obesity in a recessive model. This genotype, after controlling for cholesterol, LDL cholesterol, and triglycerides, was independently associated with obesity (P = 0.048), and increases the chance of obesity in 2.8 times. Therefore, our data suggest the involvement of collagen XVIII in human adipogenesis and susceptibility to obesity.


Colágeno XVIII pode gerar dois fragmentos, um correspondendo à região NC11-728 contendo o motivo ''frizzled'', o qual possivelmente atua na sinalização Wnt, e outro correspondendo a Endostatina, que é clivada a partir da região NC1 e é uma potente inibidora de angiogênese. Colágeno XVIII e a via de sinalização Wnt foram recentemente associados à diferenciação adipogênica e obesidade em alguns modelosanimais, porém ainda não em humanos. No presente trabalho, mostramos que os níveis de expressão gênica do COL18A1 aumentam durante o processo de diferenciação adipogênica em humanos. Também testamos se polimorfismos localizados no motivo ''Frizzled'' (c.1136C > T; Thr379Met) e na região da Endostatina (c.4349G > A; Asp1437Asn) contribuem na predisposição a obesidade em pacientes com diabetes tipo 2. (113 obesos, BMI > 30; 232 não-obesos, BMI < 30) de ancestralidade Européia. Nenhuma evidência de associação entre o alelo c.4349G > A e obesidade foi observada, contudo, observamos uma freqüência significativamente maior de homozigotos c.1136TT em obesos (19.5 por cento) do que em não-obesos (10.9 por cento)[P = 0.02; OR = 2.0 (95 por centoCI: 1.07-3.73)], sugerindo que o alelo c.1136T está associado com obesidade conforme ummodelo recessivo. Este genótipo manteve-se associado à obesidade (P = 0.048) mesmo após o controle das variáveis colesterol, LDL e triglicérides, e confere um risco 2.8 vezes maior de obesidade. Portanto, nossos dados sugerem o envolvimento do colágeno XVIII em adipogênese humana e predisposição a obesidade.


Subject(s)
Female , Humans , Male , Middle Aged , Adipocytes/cytology , Adipogenesis/genetics , Collagen Type XVIII/genetics , /genetics , Obesity/genetics , Adipocytes/metabolism , Case-Control Studies , Collagen Type XVIII/metabolism , /metabolism , Endostatins/genetics , Endostatins/metabolism , Genetic Predisposition to Disease , Gene Expression/genetics , Obesity/metabolism , Polymerase Chain Reaction , Polymorphism, Genetic
17.
An Acad Bras Cienc ; 78(1): 123-31, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16532212

ABSTRACT

Collagen XVIII, a proteoglycan, is a component of basement membranes (BMs). There are three distinct isoforms that differ only by their N-terminal, but with a specific pattern of tissue and developmental expression. Cleavage of its C-terminal produces endostatin, an inhibitor of angiogenesis. In its N-terminal, there is a frizzled motif which seems to be involved in Wnt signaling. Mutations in this gene cause Knobloch syndrome KS), an autosomal recessive disorder characterized by vitreoretinal and macular degeneration and occipital encephalocele. This review discusses the effect of both rare and polymorphic alleles in the human phenotype, showing that deficiency of one of the collagen XVIII isoforms is sufficient to cause KS and that null alleles causing deficiency of all collagen XVIII isoforms are associated with a more severe ocular defect. This review besides illustrating the functional importance of collagen XVIII in eye development and its structure maintenance throughout life, it also shows its role in other tissues and organs, such as nervous system and kidney.


Subject(s)
Collagen Type XVIII/genetics , Encephalocele/genetics , Eye Diseases, Hereditary/genetics , Mutation/genetics , Phenotype , Retinal Degeneration/genetics , Alleles , Genotype , Humans , Macular Degeneration/genetics , Protein Isoforms/genetics , Syndrome
18.
An. acad. bras. ciênc ; 78(1): 123-131, Mar. 2006. tab
Article in English | LILACS | ID: lil-422266

ABSTRACT

Colágeno XVIII, uma proteoglicana, é um componente das membranas basais (MBs). Existem três isoformas distintas que diferem apenas na região N-terminal, mas que apresentam um padrão específico de expressão nos diferentes tecidos e durante o desenvolvimento. A clivagem da região C-terminal produz endostatina, um inibidor de angiogênese. Na sua região N-terminal, há um motivo "frizzled'', o qual parece estar envolvido com a sinalização de Wnt. Mutações no gene COL18A1 causam a síndrome de Knobloch (SK), uma condição de herança autossômica recessiva caracterizada por degeneração vítreo - retiniana, degeneração de mácula e encefalocele occipital. Esta revisão discute o efeito tanto de alelos raros como polimórficos no fenótipo, mostrando que deficiência de uma das isoformas de colágeno XVIII é suficiente para causar SK e que alelos nulos causando deficiência de todas as isoformas de colágeno XVIII estão associadas a alterações oculares mais graves. Esta revisão, além de ilustrar a importância funcional do colágeno XVIII no desenvolvimento do olho e na manutenção de sua estrutura, também mostra que esta proteína tem um papel funcional importante em outros tecidos e órgão, como no sistema nervoso central e rim.


Subject(s)
Humans , Collagen Type XVIII/genetics , Encephalocele/genetics , Eye Diseases, Hereditary/genetics , Mutation/genetics , Phenotype , Retinal Degeneration/genetics , Alleles , Genotype , Macular Degeneration/genetics , Protein Isoforms/genetics , Syndrome
19.
Matrix Biol ; 24(8): 550-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16229994

ABSTRACT

Different levels of Collagen XVIII expression have been associated with several pathological processes such as cancer, liver fibrosis, diabetic retinopathy and Alzheimer's disease. Understanding the transcriptional regulation of Collagen XVIII might elucidate some pathways related to the progression of these diseases. The promoter 2 of COL18A1 gene is poorly understood and is responsible for the transcription of this gene in several adult tissues such as liver, eyes and brain. This study focused upon characterization of cis-regulatory elements interacting with human COL18A1 promoter 2 and identification of SNPs in this region in different ethnic groups. Our results show that there are five conserved regions (I to V) between human and mouse promoter 2 and that the human COL18A1 core promoter is located between nucleotides -186 and -21. Sp1 and Sp3 bind to conserved regions I and V, while Sp3 and YY1 interact with region II. We have verified that the SNP at position -700 (T>G) is embedded in two common haplotypes, which have different frequencies between European and African descendents. The allele -700G increases transcription and binding for a still unknown transcription factor. SNP -700 affects Sp3 and YY1 interaction with this region, even though it is not part of these transcription factors' predicted binding sites. Therefore, our results show for the first time that Sp3 and YY1 interact with human COL18A1 promoter 2, and that nucleotide -700 is part of a binding motif for a still unknown TF that is involved in the expression of this gene in hepatocytes. In addition, we also confirm the involvement of Sp1 in the regulation of this gene.


Subject(s)
Collagen Type XVIII/genetics , Hepatocytes/metabolism , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Sp1 Transcription Factor/metabolism , Sp3 Transcription Factor/metabolism , Transcription, Genetic/genetics , YY1 Transcription Factor/metabolism , Base Sequence , Cell Line, Tumor , Conserved Sequence , Genotype , Humans , Molecular Sequence Data , Nucleoproteins/metabolism , Protein Binding , Response Elements/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid
20.
Gene ; 359: 44-52, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16102917

ABSTRACT

Treacher Collins syndrome (TCS) is an autosomal dominant craniofacial malformation caused by null mutations in the TCOF1 gene. High inter and intra familial clinical variability, ranging from mild malar hypoplasia to perinatal death due to airway collapse is observed, but, to date, no genotype-phenotype correlation has been reported. Considering haploinsufficiency as the molecular mechanism underlying the disease, we have hypothesized that mutations in the promoter region of the gene, which has never been previously characterized, in trans with a pathogenic mutation, could modulate the phenotype. Therefore, the aims of the present study were to determine the TCOF1 gene's core promoter and to identify mutations in this region that could contribute to the phenotypic variation observed in this syndrome. We have delimitated the minimal promoter to a region of less than 150 bp, with 63% of identity among 5 different species. We screened 1.2 kbp of the TCOF1 5' flanking sequence in the DNA obtained from 21 patients and 51 controls and identified four new single nucleotide polymorphisms (SNPs), one of which (-346C>T), was proved to be functional, as it decreased the promoter activity by 38%. Electrophoretic mobility shift assay (EMSA) analysis demonstrated that the -346T allele impairs DNA-binding to the YY1 transcription factor. This promoter variant represents a candidate allele to explain the clinical variability in patients bearing TCS.


Subject(s)
Nuclear Proteins/genetics , Phosphoproteins/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , YY1 Transcription Factor/metabolism , Alleles , Animals , Base Sequence , Binding, Competitive , Brazil , Cell Line, Tumor , DNA Mutational Analysis , Dogs , Electrophoretic Mobility Shift Assay , Family Health , Female , Gene Expression Regulation , Gene Frequency , Genetic Testing , Genetic Vectors/genetics , Humans , Male , Mandibulofacial Dysostosis/diagnosis , Mandibulofacial Dysostosis/genetics , Mice , Molecular Sequence Data , Mutation , Nuclear Proteins/metabolism , Pan troglodytes , Pedigree , Phosphoproteins/metabolism , Protein Binding/genetics , Rats , Sequence Alignment , Sequence Homology, Nucleic Acid , Species Specificity , Transfection , YY1 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...