Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 155: 85-92, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32745933

ABSTRACT

Certain metal (loid)-resistant bacteria that inhabit the rhizosphere have shown to improve plant growth and tolerance under toxic metal stress. In this study, we tested if six native, arsenic-resistant and plant growth promoting bacteria (PGPB) were able to enhance soybean (Glycine max L.) growth and modulate arsenic (As) uptake. As a previous work, we tested all single isolates and all possible binary combinations without arsenic stress to identify the combinations that would have the greatest plant growth promoting effect. In this study, a screening assay was performed with only five inoculation options selected after first stage (Pseudomonas sp. AW4, Pseudomonas sp. AW6, AW4+AW6, Rhodococcus sp. AW3+Pseudomonas sp. AW5 and Enterobacter sp. AW1+AW6). In both stages, inoculation was implemented by imbibition of soybean seeds with bacterial suspensions, and plant growth was carried out in pots using perlite as substrate in a chamber with controlled conditions. In the third stage, we performed similar assays, under As stress, using the three most promising inoculation options (AW4, AW6 and AW3+AW5). Treatments were performed by irrigation with 25 µM arsenite (As3+), 25 µM arsenate (As5+), 25 µM equimolar As3+/As5+ solution or water (control). Biometric and biochemical parameters indicated that inoculation with Pseudomonas sp. AW4 significantly promoted soybean growth under As3+/As5+ treatment and did not modified As accumulation pattern. Further field studies are needed to determine if some of these inoculation options are useful to improve in situ soybean growth under arsenic stress and could become a tool for the development of sustainable agriculture in As-impacted environments.


Subject(s)
Arsenic/toxicity , Glycine max/growth & development , Plant Roots/microbiology , Pseudomonas/physiology , Soil Pollutants/toxicity , Enterobacter/physiology , Rhizosphere , Rhodococcus/physiology , Glycine max/drug effects , Glycine max/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...