Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1130052, 2023.
Article in English | MEDLINE | ID: mdl-37153563

ABSTRACT

Background: Immunotherapy-based regimens have considerably improved the survival rate of B-cell non-Hodgkin lymphoma (B-NHL) patients in the last decades; however, most disease subtypes remain almost incurable. TG-1801, a bispecific antibody that targets CD47 selectively on CD19+ B-cells, is under clinical evaluation in relapsed/refractory (R/R) B-NHL patients either as a single-agent or in combination with ublituximab, a new generation CD20 antibody. Methods: A set of eight B-NHL cell lines and primary samples were cultured in vitro in the presence of bone marrow-derived stromal cells, M2-polarized primary macrophages, and primary circulating PBMCs as a source of effector cells. Cell response to TG-1801 alone or combined with the U2 regimen associating ublituximab to the PI3Kδ inhibitor umbralisib, was analyzed by proliferation assay, western blot, transcriptomic analysis (qPCR array and RNA sequencing followed by gene set enrichment analysis) and/or quantification of antibody-dependent cell death (ADCC) and antibody-dependent cell phagocytosis (ADCP). CRISPR-Cas9 gene edition was used to selectively abrogate GPR183 gene expression in B-NHL cells. In vivo, drug efficacy was determined in immunodeficient (NSG mice) or immune-competent (chicken embryo chorioallantoic membrane (CAM)) B-NHL xenograft models. Results: Using a panel of B-NHL co-cultures, we show that TG-1801, by disrupting the CD47-SIRPα axis, potentiates anti-CD20-mediated ADCC and ADCP. This led to a remarkable and durable antitumor effect of the triplet therapy composed by TG-1801 and U2 regimen, in vitro, as well as in mice and CAM xenograft models of B-NHL. Transcriptomic analysis also uncovered the upregulation of the G protein-coupled and inflammatory receptor, GPR183, as a crucial event associated with the efficacy of the triplet combination. Genetic depletion and pharmacological inhibition of GPR183 impaired ADCP initiation, cytoskeleton remodeling and cell migration in 2D and 3D spheroid B-NHL co-cultures, and disrupted macrophage-mediated control of tumor growth in B-NHL CAM xenografts. Conclusions: Altogether, our results support a crucial role for GPR183 in the recognition and elimination of malignant B cells upon concomitant targeting of CD20, CD47 and PI3Kδ, and warrant further clinical evaluation of this triplet regimen in B-NHL.


Subject(s)
Antibodies, Bispecific , Burkitt Lymphoma , Lymphoma, B-Cell , Neoplasms , Chick Embryo , Humans , Mice , Animals , Immune Checkpoint Inhibitors/therapeutic use , CD47 Antigen , Neoplasms/metabolism , Lymphoma, B-Cell/drug therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Disease Models, Animal , Receptors, G-Protein-Coupled
2.
Cancer Discov ; 13(7): 1720-1747, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37012202

ABSTRACT

Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE: FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Humans , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Fatty Acids , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Oxidative Stress , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor
4.
Semin Cell Dev Biol ; 132: 213-229, 2022 12.
Article in English | MEDLINE | ID: mdl-35184940

ABSTRACT

As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.


Subject(s)
Neoplasms , Ubiquitin , Humans , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Protein Processing, Post-Translational , Neoplasms/drug therapy
5.
Clin Cancer Res ; 27(23): 6591-6601, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34551904

ABSTRACT

PURPOSE: Despite the remarkable activity of BTK inhibitors (BTKi) in relapsed B-cell non-Hodgkin lymphoma (B-NHL), no clinically-relevant biomarker has been associated to these agents so far. The relevance of phosphoproteomic profiling for the early identification of BTKi responders remains underexplored. EXPERIMENTAL DESIGN: A set of six clinical samples from an ongoing phase I trial dosing patients with chronic lymphocytic leukemia (CLL) with TG-1701, a novel irreversible and highly specific BTKi, were characterized by phosphoproteomic and RNA sequencing (RNA-seq) analysis. The activity of TG-1701 was evaluated in a panel of 11 B-NHL cell lines and mouse xenografts, including two NF-κB- and BTKC481S-driven BTKi-resistant models. Biomarker validation and signal transduction analysis were conducted through real-time PCR, Western blot analysis, immunostaining, and gene knockout (KO) experiments. RESULTS: A nonsupervised, phosphoproteomic-based clustering did match the early clinical outcomes of patients with CLL and separated a group of "early-responders" from a group of "late-responders." This clustering was based on a selected list of 96 phosphosites with Ikaros-pSer442/445 as a potential biomarker for TG-1701 efficacy. TG-1701 treatment was further shown to blunt Ikaros gene signature, including YES1 and MYC, in early-responder patients as well as in BTKi-sensitive B-NHL cell lines and xenografts. In contrast, Ikaros nuclear activity and signaling remained unaffected by the drug in vitro and in vivo in late-responder patients and in BTKC481S, BTKKO, and noncanonical NF-κB models. CONCLUSIONS: These data validate phosphoproteomic as a valuable tool for the early detection of response to BTK inhibition in the clinic, and for the determination of drug mechanism of action.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Non-Hodgkin , Agammaglobulinaemia Tyrosine Kinase , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Non-Hodgkin/drug therapy , Mice , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction
7.
Sci Rep ; 11(1): 5038, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658540

ABSTRACT

GSTA1 encodes a member of a family of enzymes that function to add glutathione to target electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTA1 has several functional SNPs within its promoter region that are responsible for a change in its expression by altering promoter function. This study aims to investigate distributions of GSTA1 promoter haplotypes across different human populations and to assess their impact on the expression of GSTA1. PHASE 2.1.1 was used to infer haplotypes and diplotypes of six GSTA1 promoter SNPs on 2501 individuals from 26 populations classified by the 1000 Genomes Project into five super-populations that included Africa (N = 660), America (N = 347), East Asia (N = 504), Europe (N = 502), and South Asia (N = 488). We used pairwise FST analysis to compare sub-populations and luciferase reporter assay (LRA) to evaluate the impact of each SNP on activation of transcription and interaction with other SNPs. The distributions of GSTA1 promoter haplotypes and diplotypes were significantly different among the different human populations. Three new promoter haplotypes were found in the African super-population. LRA demonstrated that SNPs at -52 and -69 has the most impact on GSTA1 expression, however other SNPs have a significant impact on transcriptional activity. Based on LRA, a new model of cis-elements interaction is presented. Due to the significant differences in GSTA1 diplotype population frequencies, future pharmacogenomics or disease-related studies would benefit from the inclusion of the complete GSTA1 promoter haplotype based on the newly proposed metabolic grouping derived from the LRA results.


Subject(s)
Genetics, Population , Genome, Human , Glutathione Transferase/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Africa , Americas , Asia , Binding Sites , Europe , Gene Expression Regulation , Genes, Reporter , Glutathione Transferase/metabolism , Haplotypes , Hep G2 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
8.
Cancers (Basel) ; 13(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430146

ABSTRACT

For years, immunotherapy has been considered a viable and attractive treatment option for patients with cancer. Among the immunotherapy arsenal, the targeting of intratumoral immune cells by immune-checkpoint inhibitory agents has recently revolutionised the treatment of several subtypes of tumours. These approaches, aimed at restoring an effective antitumour immunity, rapidly reached the market thanks to the simultaneous identification of inhibitory signals that dampen an effective antitumor response in a large variety of neoplastic cells and the clinical development of monoclonal antibodies targeting checkpoint receptors. Leading therapies in solid tumours are mainly focused on the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) pathways. These approaches have found a promising testing ground in both Hodgkin lymphoma and non-Hodgkin lymphoma, mainly because, in these diseases, the malignant cells interact with the immune system and commonly provide signals that regulate immune function. Although several trials have already demonstrated evidence of therapeutic activity with some checkpoint inhibitors in lymphoma, many of the immunologic lessons learned from solid tumours may not directly translate to lymphoid malignancies. In this sense, the mechanisms of effective antitumor responses are different between the different lymphoma subtypes, while the reasons for this substantial difference remain partially unknown. This review will discuss the current advances of immune-checkpoint blockade therapies in B-cell lymphoma and build a projection of how the field may evolve in the near future. In particular, we will analyse the current strategies being evaluated both preclinically and clinically, with the aim of fostering the use of immune-checkpoint inhibitors in lymphoma, including combination approaches with chemotherapeutics, biological agents and/or different immunologic therapies.

9.
Front Genet ; 10: 986, 2019.
Article in English | MEDLINE | ID: mdl-31681423

ABSTRACT

In the last 10 years, major advances have been made in the diagnosis and development of selective therapies for several blood cancers, including B-cell non-Hodgkin lymphoma (B-NHL), a heterogeneous group of malignancies arising from the mature B lymphocyte compartment. However, most of these entities remain incurable and current treatments are associated with variable efficacy, several adverse events, and frequent relapses. Thus, new diagnostic paradigms and novel therapeutic options are required to improve the prognosis of patients with B-NHL. With the recent deciphering of the mutational landscapes of B-cell disorders by high-throughput sequencing, it came out that different epigenetic deregulations might drive and/or promote B lymphomagenesis. Consistently, over the last decade, numerous epigenetic drugs (or epidrugs) have emerged in the clinical management of B-NHL patients. In this review, we will present an overview of the most relevant epidrugs tested and/or used so far for the treatment of different subtypes of B-NHL, from first-generation epigenetic therapies like histone acetyl transferases (HDACs) or DNA-methyl transferases (DNMTs) inhibitors to new agents showing selectivity for proteins that are mutated, translocated, and/or overexpressed in these diseases, including EZH2, BET, and PRMT. We will dissect the mechanisms of action of these epigenetic inhibitors, as well as the molecular processes underlying their lack of efficacy in refractory patients. This review will also provide a summary of the latest strategies being employed in preclinical and clinical settings, and will point out the most promising lines of investigation in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...