Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 183, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600117

ABSTRACT

Human connectome studies have provided abundant data consistent with the hypothesis that functional dysconnectivity is predominant in psychosis spectrum disorders. Converging lines of evidence also suggest an interaction between dorsal anterior cingulate cortex (dACC) cortical glutamate with higher-order functional brain networks (FC) such as the default mode (DMN), dorsal attention (DAN), and executive control networks (ECN) in healthy controls (HC) and this mechanism may be impaired in psychosis. Data from 70 antipsychotic-medication naïve first-episode psychosis (FEP) and 52 HC were analyzed. 3T Proton magnetic resonance spectroscopy (1H-MRS) data were acquired from a voxel in the dACC and assessed correlations (positive FC) and anticorrelations (negative FC) of the DMN, DAN, and ECN. We then performed regressions to assess associations between glutamate + glutamine (Glx) with positive and negative FC of these same networks and compared them between groups. We found alterations in positive and negative FC in all networks (HC > FEP). A relationship between dACC Glx and positive and negative FC was found in both groups, but when comparing these relationships between groups, we found contrasting associations between these variables in FEP patients compared to HC. We demonstrated that both positive and negative FC in three higher-order resting state networks are already altered in antipsychotic-naïve FEP, underscoring the importance of also considering anticorrelations for optimal characterization of large-scale functional brain networks as these represent biological processes as well. Our data also adds to the growing body of evidence supporting the role of dACC cortical Glx as a mechanism underlying alterations in functional brain network connectivity. Overall, the implications for these findings are imperative as this particular mechanism may differ in untreated or chronic psychotic patients; therefore, understanding this mechanism prior to treatment could better inform clinicians.Clinical trial registration: Trajectories of Treatment Response as Window into the Heterogeneity of Psychosis: A Longitudinal Multimodal Imaging Study, NCT03442101 . Glutamate, Brain Connectivity and Duration of Untreated Psychosis (DUP), NCT02034253 .


Subject(s)
Antipsychotic Agents , Connectome , Psychotic Disorders , Humans , Antipsychotic Agents/therapeutic use , Brain , Glutamic Acid , Glutamine , Gyrus Cinguli/diagnostic imaging , Magnetic Resonance Imaging , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Psychotic Disorders/pathology
2.
Biol Psychiatry ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38272288

ABSTRACT

BACKGROUND: Intrinsic brain network connectivity is already altered in first-episode psychosis (FEP), but the longitudinal trajectories of network connectivity, especially in response to antipsychotic treatment, remain poorly understood. The goal of this study was to investigate how antipsychotic medications affect higher-order intrinsic brain network connectivity in FEP. METHODS: Data from 87 antipsychotic medication-naïve patients with FEP and 87 healthy control participants were used. Medication-naïve patients received antipsychotic treatment for 16 weeks. Resting-state functional connectivity (FC) of the default mode, salience, dorsal attention, and executive control networks were assessed prior to treatment and at 6 and 16 weeks after treatment. We evaluated baseline and FC changes using linear mixed models to test group × time interactions within each network. Associations between FC changes after 16 weeks and response to treatment were also evaluated. RESULTS: Prior to treatment, significant group differences in all networks were found. However, significant trajectory changes in FC were found only in the default mode and executive control networks. Changes in FC in these networks were associated with treatment response. Several sensitivity analyses showed a consistent normalization of executive control network FC in response to antipsychotic treatment. CONCLUSIONS: Here, we found that alterations in intrinsic brain network FC were not only alleviated with antipsychotic treatment, but the extent of this normalization was also associated with the degree of reduction in symptom severity. Taken together, our data suggest modulation of intrinsic brain network connectivity (mainly frontoparietal connectivity) as a mechanism underlying antipsychotic treatment response in FEP.

3.
Neuroimage Clin ; 32: 102845, 2021.
Article in English | MEDLINE | ID: mdl-34662778

ABSTRACT

BACKGROUND: Salience network (SN) connectivity is altered in schizophrenia, but the pathophysiological origin remains poorly understood. The goal of this multimodal neuroimaging study was to investigate the role of glutamatergic metabolism as putative mechanism underlying SN dysconnectivity in first episode psychosis (FEP) subjects. METHODS: We measured glutamate + glutamine (Glx) in the dorsal anterior cingulate cortex (dACC) from 70 antipsychotic-naïve FEP subjects and 52 healthy controls (HC). The dACC was then used as seed to define positive and negative resting state functional connectivity (FC) of the SN. We used multiple regression analyses to test main effects and group interactions of Glx and FC associations. RESULTS: dACC Glx levels did not differ between groups. Positive FC was significantly reduced in FEP compared to HC, and no group differences were found in negative FC. Group interactions of Glx-FC associations were found within the SN for positive FC, and in parietal cortices for negative FC. In HC, higher Glx levels predicted greater positive FC in the dACC and insula, and greater negative FC of the lateral parietal cortex. These relationships were weaker or absent in FEP. CONCLUSIONS: Here, we found that positive FC in the SN is already altered in medication-naïve FEP, underscoring the importance of considering both correlations and anticorrelations for characterization of pathology. Our data demonstrate that Glx and functional connectivity work differently in FEP than in HC, pointing to a possible mechanism underlying dysconnectivity in psychosis.


Subject(s)
Glutamic Acid , Psychotic Disorders , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
4.
J Am Heart Assoc ; 10(18): e021511, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34514847

ABSTRACT

Background The loss of endothelial integrity increases the risk of intracerebral hemorrhage during ischemic stroke. Adjunct therapeutic targets for reperfusion in ischemic stroke are in need to prevent blood-brain barrier disruption. Recently, we have shown that endothelial permeability is mediated by lysophosphatidic acid (LPA), but the role of autotaxin, which produces LPA, remains unclear in stroke. We investigate whether autotaxin/LPA axis regulates blood-brain barrier integrity after cerebral ischemia. Methods and Results Ischemic stroke was induced in mice by middle cerebral artery occlusion for 90 minutes, followed by 24-hour reperfusion. The therapeutic efficacy of autotaxin/LPA receptor blockade was evaluated using triphenyl tetrazolium chloride staining, Evans blue permeability, infrared imaging, mass spectrometry, and XF24 analyzer to evaluate blood-brain barrier integrity, autotaxin activity, and mitochondrial bioenergetics. In our mouse model of ischemic stroke, the mRNA levels of autotaxin were elevated 1.7-fold following the cerebral ischemia and reperfusion (I/R) group compared with the sham. The enzymatic activity of autotaxin was augmented by 4-fold in the I/R group compared with the sham. Plasma and brain tissues in I/R group showed elevated LPA levels. The I/R group also demonstrated mitochondrial dysfunction, as evidenced by decreased (P<0.01) basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity. Treatment with autotaxin inhibitors (HA130 or PF8380) or autotaxin/LPA receptor inhibitor (BrP-LPA) rescued endothelial permeability and mitochondrial dysfunction in I/R group. Conclusions Autotaxin-LPA signaling blockade attenuates blood-brain barrier disruption and mitochondrial function following I/R, suggesting targeting this axis could be a new therapeutic approach toward treating ischemic stroke.


Subject(s)
Blood-Brain Barrier/physiopathology , Brain Ischemia , Ischemic Stroke , Lysophospholipids/metabolism , Mitochondria/pathology , Phosphoric Diester Hydrolases/metabolism , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Mice , Receptors, Lysophosphatidic Acid/antagonists & inhibitors
5.
Transl Psychiatry ; 10(1): 137, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398671

ABSTRACT

Evidence points toward a relationship between longer duration of untreated psychosis (DUP) and worse long-term outcomes in patients with first episode psychosis (FEP), but the underlying neurobiology remains poorly understood. Proton magnetic resonance spectroscopy studies have reported altered hippocampus glutamatergic neurotransmission, and structural MRI as reported hippocampal atrophy that may be associated with memory impairment in schizophrenia. Here, we quantify left hippocampus glutamate (Glx) and left hippocampus subfield volumes in 54 antipsychotic-naive FEP and 41 healthy controls (HC), matched on age, sex, and parental occupation. While there were no significant group difference in Glx levels, hippocampal Glx levels were significantly higher in those who underwent a long DUP (>12 months) compared to those with a short DUP, and compared to HC. Compared to HC, FEP had significantly reduced whole hippocampus volume, as well as of CA1, CA4, granule cell layer, subiculum, and presubiculum subfields. Smaller whole hippocampal volume, as well as CA1, molecular layer, subiculum, presubiculum, and hippocampal tail volumes were significantly associated with longer DUP. However, we found no significant association between hippocampal Glx levels and hippocampal volume or subfields, suggesting that these alterations are not related, or their relationship does not follow a linear pattern. However, our results strongly suggest that one or several pathophysiological processes underlie the DUP. Importantly, our data highlight the critical need for reducing the DUP and for early pharmacological intervention with the hope to prevent structural deficits and, hopefully, improve clinical outcomes.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Glutamic Acid , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Organ Size , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy
6.
Hum Brain Mapp ; 41(11): 2999-3008, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32372508

ABSTRACT

Psychotic disorders are disabling clinical syndromes characterized by widespread alterations in cortical information processing. Disruption of frontoparietal network (FPN) connectivity has emerged as a common footprint across the psychosis spectrum. Our goal was to characterize the static and dynamic resting-state functional connectivity (FC) of the FPN in antipsychotic-naïve first-episode psychosis (FEP) subjects. We compared the static FC of the FPN in 40 FEP and 40 healthy control (HC) subjects, matched on age, sex, and socioeconomic status. To study the dynamic FC, we measured quasiperiodic patterns (QPPs) that consist of infraslow spatioemporal patterns embedded in the blood oxygen level-dependent signal that repeats over time, exhibiting alternation of high and low activity. Relative to HC, we found functional hypoconnectivity between the right middle frontal gyrus and the right middle temporal gyrus, as well as the left inferior temporal gyrus and the left inferior parietal gyrus in FEP (p < .05, false discovery rate corrected). The correlation of the QPP with all functional scans was significantly stronger for FEP compared to HC, suggesting a greater impact of the QPPs to intrinsic brain activity in psychotic population. Regressing the QPP from the functional scans erased all significant group differences in static FC, suggesting that abnormal connectivity in FEP could result from altered QPP. Our study supports that alterations of cortical information processing are not a function of psychotic chronicity or antipsychotic medication exposure and may be regarded as trait specific. In addition, static connectivity abnormality may be partly related to altered brain network temporal dynamics.


Subject(s)
Connectome/methods , Frontal Lobe/physiopathology , Nerve Net/physiopathology , Parietal Lobe/physiopathology , Psychotic Disorders/physiopathology , Adolescent , Adult , Female , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Parietal Lobe/diagnostic imaging , Pattern Recognition, Automated , Psychotic Disorders/diagnostic imaging , Young Adult
7.
Article in English | MEDLINE | ID: mdl-31902581

ABSTRACT

BACKGROUND: In the United States, the average duration of untreated psychosis (DUP) is 21 months, and it remains unknown how longer DUP may affect brain functioning in antipsychotic-naïve patients with first-episode psychosis. The objective was to determine the effects of DUP on functional connectivity and brain morphology measured with resting-state functional and structural magnetic resonance imaging. METHODS: Medication-naïve patients with first-episode psychosis were referred from various clinical settings. After accounting for exclusion criteria, attrition, and data quality, final analyses included 55 patients (35 male and 20 female; mean age, 24.18 years). Patients with first-episode psychosis were subjected to a 16-week trial of risperidone, a commonly used antipsychotic drug. Treatment response was calculated as change in the psychosis subscale of the Brief Psychiatric Rating Scale between baseline and 16 weeks. Resting-state functional connectivity magnetic resonance imaging and brain morphology (surface area and cortical thickness) were assessed. RESULTS: Longer DUP was associated with worse treatment response and reduced functional connectivity-more specifically in the default, salience, and executive networks. Moreover, longer DUP was associated with reduced surface area in the salience and executive networks and with increased cortical thickness in the default mode and salience networks. When the functional connectivity of the default mode network was added as a mediator, the relationship between DUP and treatment response was no longer significant. CONCLUSIONS: These data suggest that several neurobiological alterations in the form of reduced functional connectivity and surface area and increased cortical thickness underpin the effect of prolonged DUP.


Subject(s)
Depressive Disorder, Major , Psychotic Disorders , Schizophrenia , Adult , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Brain/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Psychotic Disorders/drug therapy , Risperidone/therapeutic use , Schizophrenia/drug therapy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...