Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 29(7): 1093-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19423864

ABSTRACT

OBJECTIVE: Transplantation of adipose-derived stroma cells (ADSCs) stimulates neovascularization after experimental ischemic injury. ADSC proangiogenic potential is likely mediated by their ability to differentiate into endothelial cells and produce a wide array of angiogenic and antiapoptotic factors. Mitochondrial reactive oxygen species (ROS) have been shown to control ADSC differentiation. We therefore hypothesized that mitochondrial ROS production may change the ADSC proangiogenic properties. METHODS AND RESULTS: The use of pharmacological strategies (mitochondrial inhibitors, antimycin, and rotenone, with or without antioxidants) allowed us to specifically and precisely modulate mitochondrial ROS generation in ADSCs. We showed that transient stimulation of mitochondrial ROS generation in ADSCs before their injection in ischemic hindlimb strongly improved revascularization and the number of ADSC-derived CD31-positive cells in ischemic area. Mitochondrial ROS generation increased the secretion of the proangiogenic and antiapoptotic factors, VEGF and HGF, but did not affect ADSC ability to differentiate into endothelial cells, in vitro. Moreover, mitochondrial ROS-induced ADSC preconditioning greatly protect ADSCs against oxidative stress-induced cell death. CONCLUSIONS: Our study demonstrates that in vitro preconditioning by moderate mitochondrial ROS generation strongly increases in vivo ADSC proangiogenic properties and emphasizes the crucial role of mitochondrial ROS in ADSC fate.


Subject(s)
Cell Differentiation/physiology , Endothelial Cells/cytology , Endothelial Cells/physiology , Mitochondria/metabolism , Neovascularization, Physiologic/physiology , Reactive Oxygen Species/metabolism , Adipocytes , Animals , Cells, Cultured , Male , Mice , Reperfusion Injury/physiopathology , Stromal Cells/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL