Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11312, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760496

ABSTRACT

The syncytiotrophoblast is a multinucleated structure that arises from fusion of mononucleated cytotrophoblasts, to sheath the placental villi and regulate transport across the maternal-fetal interface. Here, we ask whether the dynamic mechanical forces that must arise during villous development might influence fusion, and explore this question using in vitro choriocarcinoma trophoblast models. We demonstrate that mechanical stress patterns arise around sites of localized fusion in cell monolayers, in patterns that match computational predictions of villous morphogenesis. We then externally apply these mechanical stress patterns to cell monolayers and demonstrate that equibiaxial compressive stresses (but not uniaxial or equibiaxial tensile stresses) enhance expression of the syndecan-1 and loss of E-cadherin as markers of fusion. These findings suggest that the mechanical stresses that contribute towards sculpting the placental villi may also impact fusion in the developing tissue. We then extend this concept towards 3D cultures and demonstrate that fusion can be enhanced by applying low isometric compressive stresses to spheroid models, even in the absence of an inducing agent. These results indicate that mechanical stimulation is a potent activator of cellular fusion, suggesting novel avenues to improve experimental reproductive modelling, placental tissue engineering, and understanding disorders of pregnancy development.


Subject(s)
Cell Fusion , Stress, Mechanical , Trophoblasts , Trophoblasts/metabolism , Trophoblasts/cytology , Trophoblasts/physiology , Humans , Female , Pregnancy , Biomechanical Phenomena , Placenta/metabolism , Placenta/cytology , Cadherins/metabolism , Models, Biological
2.
iScience ; 26(12): 108517, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125020

ABSTRACT

Stem cells are a keystone of intestinal homeostasis, but their function could be shifted during energy imbalance or by crosstalk with microbial metabolites in the stem cell niche. This study reports the effect of obesity and microbiota-derived short-chain fatty acids (SCFAs) on intestinal stem cell (ISC) fate in human crypt-derived intestinal organoids (enteroids). ISC fate decision was impaired in obesity, resulting in smaller enteroids with less outward protruding crypts. Our key finding is that SCFAs switch ISC commitment to the absorptive enterocytes, resulting in reduced intestinal permeability in obese enteroids. Mechanistically, SCFAs act as HDAC inhibitors in stem cells to enhance Notch signaling, resulting in transcriptional activation of the Notch target gene HES1 to promote enterocyte differentiation. In summary, targeted reprogramming of ISC fate, using HDAC inhibitors, may represent a potential, robust therapeutic strategy to improve gut integrity in obesity.

3.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614212

ABSTRACT

Short-chain fatty acids as well as their bacterial producers are of increasing interest in inflammatory bowel diseases. Although less studied compared to butyrate, acetate might also be of interest as it may be less toxic to epithelial cells, stimulate butyrate-producing bacteria by cross-feeding, and have anti-inflammatory and barrier-protective properties. Moreover, one of the causative factors of the probiotic potency of Saccharomyces cerevisae var. boulardii is thought to be its high acetate production. Therefore, the objective was to preclinically assess the effects of high acetate concentrations on inflammation and barrier integrity in organoid-based monolayer cultures from ulcerative colitis patients. Confluent organoid-derived colonic epithelial monolayers (n = 10) were exposed to basolateral inflammatory stimulation or control medium. After 24 h, high acetate or control medium was administered apically for an additional 48 h. Changes in TEER were measured after 48 h. Expression levels of barrier genes and inflammatory markers were determined by qPCR. Pro-inflammatory proteins in the supernatant were quantified using the MSD platform. Increased epithelial resistance was observed with high acetate administration in both inflamed and non-inflamed conditions, together with decreased expression levels of IL8 and TNFα and CLDN1. Upon high acetate administration to inflamed monolayers, upregulation of HIF1α, MUC2, and MKI67, and a decrease of the majority of pro-inflammatory cytokines was observed. In our patient-derived human epithelial cell culture model, a protective effect of high acetate administration on epithelial resistance, barrier gene expression, and inflammatory protein production was observed. These findings open up new possibilities for acetate-mediated management of barrier defects and inflammation in IBD.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Colitis, Ulcerative/metabolism , Intestinal Mucosa/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Butyrates/pharmacology , Acetates/pharmacology , Acetates/metabolism , Organoids/metabolism , Colitis/metabolism
4.
Gut Microbes ; 14(1): 2089003, 2022.
Article in English | MEDLINE | ID: mdl-35758256

ABSTRACT

Microbial dysbiosis is an established finding in patients with inflammatory bowel disease (IBD), but host-microbial interactions are poorly understood. We aimed to unravel the effect of microbiota exposure on intestinal epithelial cells. Confluent Transwell® organoid monolayers of eight UC patients and eight non-IBD controls were co-cultured for six hours with microbiota (3x108 cells) of UC patients or a healthy volunteer (HV), in the presence or absence of an inflammatory cytokine mix. Transepithelial electrical resistance (TEER), fluorescein isothiocyanate (FITC) dextran measurements, and RNA sequencing were performed on epithelial cells, and 16S rRNA sequencing on microbiota samples before and after co-culture. Transcriptomic response following microbiota exposure was not different between epithelial cells from UC patients or non-IBD controls. Following UC microbiota exposure, but not HV microbiota, a strong decrease in epithelial barrier integrity was observed in both UC and HV epithelial cells by TEER and FITC dextran measurements. Exposure of inflamed epithelium to UC microbiota induced transcriptomic stress pathways including activation of EGR1, MAPK and JAK/STAT signaling, as well as AP-1 family and FOSL transcripts. Stress responses after HV microbiota stimulation were milder. We conclude that not the epithelial cell origin (UC versus non-IBD) but the microbial donor drives transcriptomic responses, as exposure to UC microbiota was sufficient to induce stress responses in all epithelial cells. Further research on therapies to restore the microbial balance, to remove the constant trigger of dysbiosis, is required.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Dysbiosis/metabolism , Gastrointestinal Microbiome/genetics , Humans , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , RNA, Ribosomal, 16S/genetics
5.
J Cyst Fibros ; 21(4): 644-651, 2022 07.
Article in English | MEDLINE | ID: mdl-35690578

ABSTRACT

BACKGROUND: In cystic fibrosis (CF), genotype-phenotype correlation is complicated by the large number of CFTR variants, the influence of modifier genes, environmental effects, and the existence of complex alleles. We document the importance of complex alleles, in particular the F508C variant present in cis with the S1251N disease-causing variant, by detailed analysis of a patient with CF, with the [S1251N;F508]/G542X genotype and a very mild phenotype, contrasting it to that of four subjects with the [S1251N;F508C]/F508del genotype and classical CF presentation. METHODS: Genetic differences were identified by Sanger sequencing and CFTR function was quantified using rectal organoids in rectal organoid morphology analysis (ROMA) and forskolin-induced swelling (FIS) assays. CFTR variants were further characterised in CF bronchial epithelial (CFBE) cell lines. The impact of involved amino acid changes in the CFTR 3D protein structure was evaluated. RESULTS: Organoids of the patient [S1251N;F508] with mild CF phenotype confirmed the CF diagnosis but showed higher residual CFTR function compared to the four others [S1251N;F508C]. CFBE cell lines showed a decrease in [S1251N;F508C]-CFTR function but not in processing when compared to [S1251N;F508]-CFTR. Analysis of the 3D CFTR structure suggested an additive deleterious effect of the combined presence of S1251N and F508C with respect to NBD1-2 dimerisation. CONCLUSIONS: In vitro and in silico data show that the presence of F508C in cis with S1251N decreases CFTR function without affecting processing. Complex CFTR alleles play a role in clinical phenotype and their identification is relevant in the context of personalised medicine for each patient with CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Alleles , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Mutation , Phenotype
6.
J Crohns Colitis ; 16(8): 1306-1320, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35150242

ABSTRACT

Inflammatory bowel disease [IBD] has a multifactorial origin and originates from a complex interplay of environmental factors with the innate immune system at the intestinal epithelial interface in a genetically susceptible individual. All these factors make its aetiology intricate and largely unknown. Multi-omic datasets obtained from IBD patients are required to gain further insights into IBD biology. We here review the landscape of multi-omic data availability in IBD and identify barriers and gaps for future research. We also outline the various technical and non-technical factors that influence the utility and interpretability of multi-omic datasets and thereby the study design of any research project generating such datasets. Coordinated generation of multi-omic datasets and their systemic integration with clinical phenotypes and environmental exposures will not only enhance understanding of the fundamental mechanisms of IBD but also improve therapeutic strategies. Finally, we provide recommendations to enable and facilitate generation of multi-omic datasets.


Subject(s)
Inflammatory Bowel Diseases , Environmental Exposure , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Phenotype
7.
Thorax ; 76(11): 1146-1149, 2021 11.
Article in English | MEDLINE | ID: mdl-33859053

ABSTRACT

Diagnosing cystic fibrosis (CF) when sweat chloride is not in the CF range and less than 2 disease-causing CFTR mutations are found requires physiological CFTR assays, which are not always feasible or available. We developed a new physiological CFTR assay based on the morphological differences between rectal organoids from subjects with and without CF. In organoids from 167 subjects with and 22 without CF, two parameters derived from a semi-automated image analysis protocol (rectal organoid morphology analysis, ROMA) fully discriminated CF subjects with two disease-causing mutations from non-CF subjects (p<0.001). ROMA, feasible at all ages, can be centralised to improve standardisation.


Subject(s)
Cystic Fibrosis , Organoids , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Mutation
8.
J Crohns Colitis ; 15(3): 485-498, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-32915959

ABSTRACT

BACKGROUND: Patients with inflammatory bowel disease [IBD] are considered immunosuppressed, but do not seem more vulnerable for COVID-19. Nevertheless, intestinal inflammation has shown to be an important risk factor for SARS-CoV-2 infection and prognosis. Therefore, we investigated the role of intestinal inflammation on the viral intestinal entry mechanisms, including ACE2, in IBD. METHODS: We collected inflamed and uninflamed mucosal biopsies from Crohn's disease [CD] [n = 193] and ulcerative colitis [UC] [n = 158] patients, and from 51 matched non-IBD controls for RNA sequencing, differential gene expression, and co-expression analysis. Organoids from UC patients were subjected to an inflammatory mix and processed for RNA sequencing. Transmural ileal biopsies were processed for single-cell [sc] sequencing. Publicly available colonic sc-RNA sequencing data, and microarrays from tissue pre/post anti-tumour necrosis factor [TNF] therapy, were analysed. RESULTS: In inflamed CD ileum, ACE2 was significantly decreased compared with control ileum [p = 4.6E-07], whereas colonic ACE2 was higher in inflamed colon of CD/UC compared with control [p = 8.3E-03; p = 1.9E-03]. Sc-RNA sequencing confirmed this ACE2 dysregulation and exclusive epithelial ACE2 expression. Network analyses highlighted HNF4A as key regulator of ileal ACE2, and pro-inflammatory cytokines and interferon regulating factors regulated colonic ACE2. Inflammatory stimuli upregulated ACE2 in UC organoids [p = 1.7E-02], but not in non-IBD controls [p = 9.1E-01]. Anti-TNF therapy restored colonic ACE2 regulation in responders. CONCLUSIONS: Intestinal inflammation alters SARS-CoV-2 coreceptors in the intestine, with opposing dysregulations in ileum and colon. HNF4A, an IBD susceptibility gene, seems an important upstream regulator of ACE2 in ileum, whereas interferon signalling might dominate in colon.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19 , Colitis, Ulcerative , Colon , Crohn Disease , Hepatocyte Nuclear Factor 4 , Ileum , Interferons/immunology , SARS-CoV-2/physiology , Biopsy/methods , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/virology , Colon/immunology , Colon/pathology , Colon/virology , Crohn Disease/immunology , Crohn Disease/pathology , Crohn Disease/virology , Cytokines/immunology , Female , Gene Expression Regulation , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/immunology , Humans , Ileum/immunology , Ileum/pathology , Ileum/virology , Male , Middle Aged , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis
9.
J Crohns Colitis ; 15(7): 1222-1235, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33341879

ABSTRACT

The gut microbiota appears to play a central role in health, and alterations in the gut microbiota are observed in both forms of inflammatory bowel disease [IBD], namely Crohn's disease and ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota interactions in disease onset and progression is pivotal, and requires representative models mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota, and immune cells. New advancements in organoid microfluidics technology are facilitating the study of IBD-related microbial-epithelial cross-talk, and the discovery of novel microbial therapies. Here, we review different organoid-based ex vivo models that are currently available, and benchmark their suitability and limitations for specific research questions. Organoid applications, such as patient-derived organoid biobanks for microbial screening and 'omics technologies, are discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms and eventually allow personalised medicine.


Subject(s)
Dysbiosis/microbiology , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/microbiology , Organoids , Disease Progression
11.
Clin Gastroenterol Hepatol ; 18(5): 1142-1151.e10, 2020 05.
Article in English | MEDLINE | ID: mdl-31446181

ABSTRACT

BACKGROUND & AIMS: We aimed to identify biomarkers that might be used to predict responses of patients with inflammatory bowel diseases (IBD) to vedolizumab therapy. METHODS: We obtained biopsies from inflamed colon of patients with IBD who began treatment with vedolizumab (n = 31) or tumor necrosis factor (TNF) antagonists (n = 20) and performed RNA-sequencing analyses. We compared gene expression patterns between patients who did and did not enter endoscopic remission (absence of ulcerations at month 6 for patients with Crohn's disease or Mayo endoscopic subscore ≤1 at week 14 for patients with ulcerative colitis) and performed pathway analysis and cell deconvolution for training (n = 20) and validation (n = 11) datasets. Colon biopsies were also analyzed by immunohistochemistry. We validated a baseline gene expression pattern associated with endoscopic remission after vedolizumab therapy using 3 independent datasets (n = 66). RESULTS: We identified significant differences in expression levels of 44 genes between patients who entered remission after vedolizumab and those who did not; we found significant increases in leukocyte migration in colon tissues from patients who did not enter remission (P < .006). Deconvolution methods identified a significant enrichment of monocytes (P = .005), M1-macrophages (P = .05), and CD4+ T cells (P = .008) in colon tissues from patients who did not enter remission, whereas colon tissues from patients in remission had higher numbers of naïve B cells before treatment (P = .05). Baseline expression levels of PIWIL1, MAATS1, RGS13, and DCHS2 identified patients who did vs did not enter remission with 80% accuracy in the training set and 100% accuracy in validation dataset 1. We validated these findings in the 3 independent datasets by microarray, RNA sequencing and quantitative PCR analysis (P = .003). Expression levels of these 4 genes did not associate with response to anti-TNF agents. We confirmed the presence of proteins encoded by mRNAs using immunohistochemistry. CONCLUSIONS: We identified 4 genes whose baseline expression levels in colon tissues of patients with IBD associate with endoscopic remission after vedolizumab, but not anti-TNF, treatment. We validated this signature in 4 independent datasets and also at the protein level. Studies of these genes might provide insights into the mechanisms of action of vedolizumab.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , RGS Proteins , Antibodies, Monoclonal, Humanized , Argonaute Proteins , Colitis, Ulcerative/drug therapy , Colon , Gastrointestinal Agents/therapeutic use , Humans , Inflammatory Bowel Diseases/drug therapy , Remission Induction , Treatment Outcome , Tumor Necrosis Factor Inhibitors
12.
J Crohns Colitis ; 13(10): 1351-1361, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-30919886

ABSTRACT

BACKGROUND AND AIMS: In vitro studies using immortalised cancer cell lines showed that butyrate has an overall positive effect on epithelial barrier integrity, but the physiological relevance of cancer cell lines is limited. We developed epithelial monolayers from human tissue samples of patients with ulcerative colitis [UC] to assess the effect of butyrate on epithelial barrier function. METHODS: A protocol to establish monolayers from primary epithelial cells of UC patients [n = 10] and non-UC controls [n = 10] was optimised. The monolayers were treated with 8 mM sodium butyrate ± tumour necrosis factor alpha [TNFα] and type II interferon [IFNγ] for 48 h. Changes in transepithelial electrical resistance were monitored. Barrier gene expression levels were measured. Inflammatory proteins in the supernatant of the cells were quantified with OLINK. RESULTS: We demonstrated that primary monolayer cultures can be grown within 1 week of culture with robust resistance values and polarised tight junction expression. Butyrate treatment of the cultures increased resistance but was detrimental in combination with TNFα and IFNγ. The combined treatment further induced even higher IL8 mRNA and inflammatory protein secretion than for the inflammatory mediators alone. The observed effects were similar in cultures from patients and non-UC controls, suggesting that there were no patient-specific responses responsible for these findings. CONCLUSIONS: We found that butyrate does not protect against inflammation-induced barrier dysfunction and even worsens its effects in primary epithelial monolayers of UC patients and controls. The basic mechanisms of butyrate should therefore be reconsidered in future studies, in particular in patients with active inflammation and pre-existing barrier defects as is known for UC.


Subject(s)
Butyrates/pharmacology , Colitis, Ulcerative/drug therapy , Cytokines/metabolism , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Adult , Aged , Butyrates/therapeutic use , Case-Control Studies , Cells, Cultured , Female , Fluorescent Antibody Technique , Gene Expression/drug effects , Humans , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Middle Aged , Tumor Necrosis Factor-alpha/pharmacology
13.
United European Gastroenterol J ; 5(8): 1073-1081, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29238585

ABSTRACT

Determining the exact pathogenesis of chronic gastrointestinal diseases remains difficult due to the complex in vivo environment. In this review we give an overview of the available epithelial cell culture systems developed to investigate pathophysiology of gastrointestinal diseases. Traditionally used two-dimensional (2D) immortalised (tumour) cell lines survive long-term, but are not genetically stable nor represent any human in particular. In contrast, primary cultures are patient unique, but short-lived. Three-dimensional (3D) organoid cultures resemble the crypt-villus domain and contain all cell lineages, are long-lived and genetically stable. Unfortunately, manipulation of the 3D organoid system is more challenging. Combining the 3D and 2D technologies may overcome limitations and offer the formation of monolayers on permeable membranes or flow-chambers. Determining the right model to use will depend on the pathology of interest and the focus of the research, defining which cell types need to be included in the model.

14.
Glia ; 65(7): 1072-1088, 2017 07.
Article in English | MEDLINE | ID: mdl-28417486

ABSTRACT

Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5ß1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5ß1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5ß1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5ß1 integrin in microglial migration during colonization of the embryonic brain.


Subject(s)
Aging , Cell Movement/physiology , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Gene Expression Regulation, Developmental/genetics , Integrin alpha5beta1/metabolism , Microglia/physiology , Animals , Blood Vessels/physiology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Embryo, Mammalian , Extracellular Matrix/metabolism , Fibronectins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Lectins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phycoerythrin/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...