Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
JCI Insight ; 9(8)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470490

ABSTRACT

Excessive lipolysis in white adipose tissue (WAT) leads to insulin resistance (IR) and ectopic fat accumulation in insulin-sensitive tissues. However, the impact of Gi-coupled receptors in restraining adipocyte lipolysis through inhibition of cAMP production remained poorly elucidated. Given that the Gi-coupled P2Y13 receptor (P2Y13-R) is a purinergic receptor expressed in WAT, we investigated its role in adipocyte lipolysis and its effect on IR and metabolic dysfunction-associated steatotic liver disease (MASLD). In humans, mRNA expression of P2Y13-R in WAT was negatively correlated to adipocyte lipolysis. In mice, adipocytes lacking P2Y13-R displayed higher intracellular cAMP levels, indicating impaired Gi signaling. Consistently, the absence of P2Y13-R was linked to increased lipolysis in adipocytes and WAT explants via hormone-sensitive lipase activation. Metabolic studies indicated that mice lacking P2Y13-R showed a greater susceptibility to diet-induced IR, systemic inflammation, and MASLD compared with their wild-type counterparts. Assays conducted on precision-cut liver slices exposed to WAT conditioned medium and on liver-specific P2Y13-R-knockdown mice suggested that P2Y13-R activity in WAT protects from hepatic steatosis, independently of liver P2Y13-R expression. In conclusion, our findings support the idea that targeting adipose P2Y13-R activity may represent a pharmacological strategy to prevent obesity-associated disorders, including type 2 diabetes and MASLD.


Subject(s)
Adipocytes , Adipose Tissue, White , Fatty Liver , Insulin Resistance , Lipolysis , Receptors, Purinergic P2 , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue, White/metabolism , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/deficiency
2.
Int J Obes (Lond) ; 48(7): 934-940, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38491191

ABSTRACT

BACKGROUND/OBJECTIVE: Insulin resistance is more prominent in men than women. If this involves adipose tissue is unknown and was presently examined. SUBJECTS/METHODS: AdipoIR (in vivo adipose insulin resistance index) was measured in 2344 women and 787 men. In 259 of the women and 54 of the men, insulin induced inhibition of lipolysis (acylglycerol breakdown) and stimulation of lipogenesis (glucose conversion to acylglycerols) were determined in subcutaneous adipocytes; in addition, basal (spontaneous) lipolysis was also determined in the fat cells. In 234 women and 115 men, RNAseq expression of canonical insulin signal genes were measured in subcutaneous adipose tissue. Messenger RNA transcripts of the most discriminant genes were quantified in 175 women and 109 men. RESULTS: Men had higher AdipoIR values than women but only when obesity (body mass index 30 kg/m2 or more) was present (p < 0.0001). The latter sex dimorphism was found among physically active and sedentary people, in those with and without cardiometabolic disease and in people using nicotine or not (p = 0.0003 or less). In obesity, adipocyte insulin sensitivity (half maximum effective hormone concentration) and maximal antilipolytic effect were tenfold and 10% lower, respectively, in men than women (p = 0.005 or less). Basal rate of lipolysis was two times higher in men than women (p > 0.0001). Sensitivity and maximum effect of insulin on lipogenesis were similar in both sexes (p = 0.26 and p = 0.18, respectively). When corrected for multiple comparison only RNAseq expression of insulin receptor substrate 1 (IRS1) was lower in men than women (p < 0.0001). The mRNA transcript for IRS1 was 60% higher in women than men (p < 0.0001). CONCLUSIONS: In obesity, adipose tissue insulin resistance is more pronounced in men than in women. The mechanism involves less efficient insulin-mediated inhibition of adipocyte lipolysis, increased basal rate of lipolysis and decreased adipose expression of a key element of insulin signaling, IRS1.


Subject(s)
Insulin Receptor Substrate Proteins , Insulin Resistance , Lipolysis , Obesity , Humans , Female , Male , Lipolysis/physiology , Insulin Resistance/physiology , Obesity/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin Receptor Substrate Proteins/genetics , Adult , Middle Aged , Adipose Tissue/metabolism , Sex Characteristics , Adipocytes/metabolism , Sex Factors
3.
Sci Adv ; 10(1): eadi2689, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170777

ABSTRACT

Defects in adipocyte lipolysis drive multiple aspects of cardiometabolic disease, but the transcriptional framework controlling this process has not been established. To address this, we performed a targeted perturbation screen in primary human adipocytes. Our analyses identified 37 transcriptional regulators of lipid mobilization, which we classified as (i) transcription factors, (ii) histone chaperones, and (iii) mRNA processing proteins. On the basis of its strong relationship with multiple readouts of lipolysis in patient samples, we performed mechanistic studies on one hit, ZNF189, which encodes the zinc finger protein 189. Using mass spectrometry and chromatin profiling techniques, we show that ZNF189 interacts with the tripartite motif family member TRIM28 and represses the transcription of an adipocyte-specific isoform of phosphodiesterase 1B (PDE1B2). The regulation of lipid mobilization by ZNF189 requires PDE1B2, and the overexpression of PDE1B2 is sufficient to attenuate hormone-stimulated lipolysis. Thus, our work identifies the ZNF189-PDE1B2 axis as a determinant of human adipocyte lipolysis and highlights a link between chromatin architecture and lipid mobilization.


Subject(s)
Adipocytes , Lipid Mobilization , Humans , Adipocytes/metabolism , Lipolysis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism
4.
Clin Nutr ; 43(2): 468-475, 2024 02.
Article in English | MEDLINE | ID: mdl-38181524

ABSTRACT

BACKGROUND: Insulin resistance in all major target tissues is present in metabolic syndrome (MetS). The resistance in adipocytes is not well described and was presently examined. METHODS: In this observational study on isolated abdominal white subcutaneous adipocytes from 419 adults, concentration-response effects of insulin on lipolysis inhibition (glycerol release) and lipogenesis stimulation (glucose conversion to total lipids) were determined. Insights into early and late insulin signaling events were obtained through the determination of insulin sensitivity (half maximum effective concentration) and responsiveness (maximum effect), respectively. In a subgroup of 132 subjects, we analyzed the subcutaneous adipose mRNA expression of genes in the canonical insulin signaling pathway using microarray. These results were validated using quantitative real-time polymerase chain reaction in 74 individuals. RESULTS: While the insulin responsiveness was similar in subjects with or without Mets, the sensitivity to insulin-mediated inhibition of lipolysis and stimulation of lipogenesis was ∼tenfold lower in subjects with MetS (p < 0.0001). When age, sex, adipocyte volume, body mass index and body shape were considered, only the antilipolytic resistance was independently associated with MetS. The mRNA expression of several genes in the canonical insulin signaling pathway were altered in MetS (p < 0.0006 or better) where the mRNA levels of insulin receptor substrate 2 associated with the antilipolytic effect (Rho = 0.34; p = 0.0016). CONCLUSION: The sensitivities of the antilipolytic and lipogenic effects of insulin are decreased in the MetS but only antilipolysis remains significant after multiple regression analysis. This resistance is localized at initial and receptor-near events in hormone signaling involving insulin receptor substrate 2.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Adult , Humans , Insulin Receptor Substrate Proteins/metabolism , Metabolic Syndrome/metabolism , Adipocytes/metabolism , Insulin/metabolism , RNA, Messenger/metabolism
5.
Health Data Sci ; 2021: 9897048, 2021.
Article in English | MEDLINE | ID: mdl-38487510

ABSTRACT

Objective. The strongest locus which associated with type 2 diabetes (T2D) by the common variant rs7903146 is the transcription factor 7-like 2 gene (TCF7L2). We aimed to quantify the interaction of diet/lifestyle interventions and the genetic effect of TCF7L2 rs7903146 on glycemic traits, body weight, or waist circumference in overweight or obese adults in several randomized controlled trials (RCTs).Methods. From October 2016 to May 2018, a large collaborative analysis was performed by pooling individual-participant data from 7 RCTs. These RCTs reported changes in glycemic control and adiposity of the variant rs7903146 after dietary/lifestyle-related interventions in overweight or obese adults. Gene treatment interaction models which used the genetic effect encoded by the allele dose and common covariates were applicable to individual participant data in all studies.Results. In the joint analysis, a total of 7 eligible RCTs were included (n=4,114). Importantly, we observed a significant effect modification of diet/lifestyle-related interventions on the TCF7L2 variant rs7903146 and changes in fasting glucose. Compared with the control group, diet/lifestyle interventions were related to lower fasting glucose by -3.06 (95% CI, -5.77 to -0.36) mg/dL (test for heterogeneity and overall effect: I2=45.1%, p<0.05; z=2.20, p=0.028) per one copy of the TCF7L2 T risk allele. Furthermore, regardless of genetic risk, diet/lifestyle interventions were associated with lower waist circumference. However, there was no significant change for diet/lifestyle interventions in other glycemic control and adiposity traits per one copy of TCF7L2 risk allele.Conclusions. Our findings suggest that carrying the TCF7L2 T risk allele may have a modestly greater benefit for specific diet/lifestyle interventions to improve the control of fasting glucose in overweight or obese adults.

SELECTION OF CITATIONS
SEARCH DETAIL