Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Eur J Endocrinol ; 189(3): 387-395, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37695807

ABSTRACT

OBJECTIVE: Our study aimed to assess the impact of genetic modifiers on the significant variation in phenotype that is observed in individuals with SHOX deficiency, which is the most prevalent monogenic cause of short stature. DESIGN AND METHODS: We performed a genetic analysis in 98 individuals from 48 families with SHOX deficiency with a target panel designed to capture the entire SHOX genomic region and 114 other genes that modulate growth and/or SHOX action. We prioritized rare potentially deleterious variants. RESULTS: We did not identify potential deleterious variants in the promoter or intronic regions of the SHOX genomic locus. In contrast, we found eight heterozygous variants in 11 individuals from nine families in genes with a potential role as genetic modifiers. In addition to a previously described likely pathogenic (LP) variant in CYP26C1 observed in two families, we identified LP variants in PTHLH and ACAN, and variants of uncertain significance in NPR2, RUNX2, and TP53 in more affected individuals from families with SHOX deficiency. Families with a SHOX alteration restricted to the regulatory region had a higher prevalence of a second likely pathogenic variant (27%) than families with an alteration compromising the SHOX coding region (2.9%, P = .04). CONCLUSION: In conclusion, variants in genes related to the growth plate have a potential role as genetic modifiers of the phenotype in individuals with SHOX deficiency. In individuals with SHOX alterations restricted to the regulatory region, a second alteration could be critical to determine the penetrance and expression of the phenotype.


Subject(s)
Dwarfism , Humans , Introns , Genomics , Growth Plate , Phenotype , Rare Diseases , Short Stature Homeobox Protein/genetics
2.
Endocr Connect ; 12(8)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37166408

ABSTRACT

Context: Congenital hypopituitarism is a genetically heterogeneous condition. Whole exome sequencing (WES) is a promising approach for molecular diagnosis of patients with this condition. Objectives: The aim of this study is to conduct WES in a patient with congenital hypopituitarism born to consanguineous parents, CDH2 screening in a cohort of patients with congenital hypopituitarism, and functional testing of a novel CDH2 variant. Design: Genomic DNA from a proband and her consanguineous parents was analyzed by WES. Copy number variants were evaluated. The genetic variants were filtered for population frequency (ExAC, 1000 genomes, gnomAD, and ABraOM), in silico prediction of pathogenicity, and gene expression in the pituitary and/or hypothalamus. Genomic DNA from 145 patients was screened for CDH2 by Sanger sequencing. Results: One female patient with deficiencies in growth hormone, thyroid-stimulating hormone, adrenocorticotropic hormone, luteinizing hormone, and follicle-stimulating hormone and ectopic posterior pituitary gland contained a rare homozygous c.865G>A (p.Val289Ile) variant in CDH2. To determine whether the p.Val289Ile variant in CDH2 affects cell adhesion properties, we stably transfected L1 fibroblast lines, labeled the cells with lipophilic dyes, and quantified aggregation. Large aggregates formed in cells expressing wildtype CDH2, but aggregation was impaired in cells transfected with variant CDH2 or non-transfected. Conclusion: A homozygous CDH2 allelic variant was found in one hypopituitarism patient, and the variant impaired cell aggregation function in vitro. No disease-causing variants were found in 145 other patients screened for CDH2 variants. Thus, CDH2 is a candidate gene for hypopituitarism that needs to be tested in different populations. Significance statement: A female patient with hypopituitarism was born from consanguineous parents and had a homozygous, likely pathogenic, CDH2 variant that impairs cell aggregation in vitro. No other likely pathogenic variants in CDH2 were identified in 145 hypopituitarism patients.

3.
Endocr Connect ; 11(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36373817

ABSTRACT

Objective: Most children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS. Design and methods: We selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools. Results: We identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n = 4), SHOX (n = 3), FGFR3 (n = 2), NPR2 (n = 2), ACAN (n = 2), and COL2A1 (n = 1) or involved in the RAS/MAPK pathway: NF1 (n = 2), PTPN11 (n = 1), CBL (n = 1), and BRAF (n = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS ≤ or > -3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children. Conclusion: A multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.

4.
Horm Res Paediatr ; 95(3): 264-274, 2022.
Article in English | MEDLINE | ID: mdl-35390795

ABSTRACT

INTRODUCTION: Isolated SHOX haploinsufficiency is a common monogenic cause of short stature. Few studies compare untreated and rhGH-treated patients up to adult height (AH). Our study highlights a growth pattern from childhood to AH in patients with SHOX haploinsufficiency and analyzes the real-world effectiveness of rhGH alone or plus GnRH analog (GnRHa). METHODS: Forty-seven patients (18 untreated and 29 rhGH-treated) with SHOX haploinsufficiency were included in a longitudinal retrospective study. Adult height was attained in 13 untreated and 18 rhGH-treated (rhGH alone [n = 8] or plus GnRHa [n = 10]) patients. RESULTS: The untreated group decreased height SDS from baseline to AH (-0.8 [-1.1; -0.4]), with an increase in the prevalence of short stature from 31% to 77%. Conversely, the rhGH-treated group had an improvement in height SDS from baseline to AH (0.6 [0.2; 0.6]; p < 0.001), with a reduction in the prevalence of short stature (from 61% to 28%). AH in the rhGH-treated patients was 1 SD (6.3 cm) taller than in untreated ones. Regarding the use of GnRHa, the subgroups (rhGH alone or plus GnRHa) attained similar AH, despite the higher prevalence of pubertal patients and worse AH prediction at the start of rhGH treatment in patients who used combined therapy. CONCLUSION: The use of rhGH treatment improves AH in patients with SHOX haploinsufficiency, preventing the loss of height potential during puberty. In peripubertal patients, the addition of GnRHa to rhGH allows AH attainment similar to the AH of patients who start rhGH alone in the prepubertal age.


Subject(s)
Body Height , Dwarfism , Human Growth Hormone , Short Stature Homeobox Protein , Adult , Body Height/genetics , Child , Dwarfism/drug therapy , Gonadotropin-Releasing Hormone , Haploinsufficiency , Human Growth Hormone/therapeutic use , Humans , Retrospective Studies , Short Stature Homeobox Protein/genetics
5.
J Clin Endocrinol Metab ; 107(5): e1797-e1806, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35134971

ABSTRACT

CONTEXT: Massively parallel sequencing (MPS) technologies have emerged as a first-tier approach for diagnosing several pediatric genetic syndromes. However, MPS has not been systematically integrated into the diagnostic workflow along with clinical/biochemical data for diagnosing 46,XY differences of sex development (DSD). OBJECTIVE: To analyze the contribution of phenotypic classification either alone or in association with genetic evaluations, mainly MPS, for diagnosing a large cohort of 46,XY DSD patients. DESIGN/PATIENTS: 209 nonsyndromic 46,XY DSD index cases from a Brazilian DSD center were included. Patients were initially classified into 3 subgroups according to clinical and biochemical data: gonadal dysgenesis (GD), disorders of androgen secretion/action, and DSD of unknown etiology. Molecular genetic studies were performed by Sanger sequencing and/or MPS. RESULTS: Clinical/biochemical classification into either GD or disorders of hormone secretion/action was obtained in 68.4% of the index cases. Among these, a molecular diagnosis was obtained in 36% and 96.5%, respectively. For the remainder 31.6% classified as DSD of clinically unknown etiology, a molecular diagnosis was achieved in 31.8%. Overall, the molecular diagnosis was achieved in 59.3% of the cohort. The combination of clinical/biochemical and molecular approaches diagnosed 78.9% of the patients. Clinical/biochemical classification matched with the genetic diagnosis in all except 1 case. DHX37 and NR5A1 variants were the most frequent genetic causes among patients with GD and DSD of clinical unknown etiology, respectively. CONCLUSIONS: The combination of clinical/biochemical with genetic approaches significantly improved the diagnosis of 46,XY DSD. MPS potentially decreases the complexity of the diagnostic workup as a first-line approach for diagnosing 46,XY DSD.


Subject(s)
Disorder of Sex Development, 46,XY , Gonadal Dysgenesis , Child , Cohort Studies , Disorder of Sex Development, 46,XY/diagnosis , Disorder of Sex Development, 46,XY/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Sexual Development/genetics
6.
Am J Hum Genet ; 108(8): 1526-1539, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34270938

ABSTRACT

Pituitary hormone deficiency occurs in ∼1:4,000 live births. Approximately 3% of the cases are due to mutations in the alpha isoform of POU1F1, a pituitary-specific transcriptional activator. We found four separate heterozygous missense variants in unrelated individuals with hypopituitarism that were predicted to affect a minor isoform, POU1F1 beta, which can act as a transcriptional repressor. These variants retain repressor activity, but they shift splicing to favor the expression of the beta isoform, resulting in dominant-negative loss of function. Using a high-throughput splicing reporter assay, we tested 1,070 single-nucleotide variants in POU1F1. We identified 96 splice-disruptive variants, including 14 synonymous variants. In separate cohorts, we found two additional synonymous variants nominated by this screen that co-segregate with hypopituitarism. This study underlines the importance of evaluating the impact of variants on splicing and provides a catalog for interpretation of variants of unknown significance in POU1F1.


Subject(s)
High-Throughput Screening Assays/methods , Hypopituitarism/pathology , Mutation , Pituitary Hormones/deficiency , RNA Splicing/genetics , Transcription Factor Pit-1/genetics , Adolescent , Adult , Child , Child, Preschool , Humans , Hypopituitarism/etiology , Hypopituitarism/metabolism , Male , Pedigree
7.
Horm Res Paediatr ; 94(1-2): 63-70, 2021.
Article in English | MEDLINE | ID: mdl-34134112

ABSTRACT

CONTEXT: Treatment with growth hormone (GH) is considered effective in improving adult height (AH) in Turner syndrome (TS). However, there are few studies comparing AH between treated patients and a concurrent untreated group. OBJECTIVE: To assess the efficacy of GH treatment in improving AH in TS and to review previous published studies with treated and untreated groups. PARTICIPANTS AND METHODS: We retrospectively analyzed clinical data and AH of a large cohort of GH-treated (n = 168) and untreated (n = 131) patients with TS. Data are shown as median and interquartile range (IQR). We assessed pretreatment variables related with AH and compared our results with 16 studies that also included an untreated group. RESULTS: The GH-treated group was 6.2 cm taller than the untreated group (AH = 149 cm [IQR 144.5-152.5 cm] vs. 142.8 cm [IQR 139-148 cm], p < 0.001) after 4.9 years of GH treatment with a dose of 0.35 mg/kg/week. AH SDS corrected for target height (TH) was 7.2 cm higher in GH-treated patients. AH SDS ≥-2 was more frequent in GH-treated patients (43%) than in untreated patients (16%, p < 0.001). AH SDS was also more frequently within the TH range in the GH-treated group (52%) than in the untreated group (15%, p < 0.001). Height SDS at start of GH therapy and TH SDS were positively correlated with AH (p < 0.001; R2 = 0.375). Considering the current result together with previous similar publications, a mean AH gain of 5.7 cm was observed in GH-treated (n = 696) versus untreated (n = 633) patients. CONCLUSIONS: Our study strengthens the evidence for efficacy of GH therapy in patients with TS from different populations.


Subject(s)
Body Height/drug effects , Growth Disorders/drug therapy , Human Growth Hormone/therapeutic use , Turner Syndrome/complications , Adult , Female , Growth Disorders/etiology , Growth Disorders/physiopathology , Human Growth Hormone/administration & dosage , Humans , Retrospective Studies , Treatment Outcome , Turner Syndrome/drug therapy , Turner Syndrome/physiopathology
8.
Eur J Endocrinol ; 185(1): 121-135, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33950863

ABSTRACT

Objective: The transcription factor OTX2 is implicated in ocular, craniofacial, and pituitary development. Design: We aimed to establish the contribution of OTX2 mutations in congenital hypopituitarism patients with/without eye abnormalities, study functional consequences, and establish OTX2 expression in the human brain, with a view to investigate the mechanism of action. Methods: We screened patients from the UK (n = 103), international centres (n = 24), and Brazil (n = 282); 145 were within the septo-optic dysplasia spectrum, and 264 had no eye phenotype. Transactivation ability of OTX2 variants was analysed in murine hypothalamic GT1-7 neurons. In situ hybridization was performed on human embryonic brain sections. Genetically engineered mice were generated with a series of C-terminal OTX2 variants. Results: Two chromosomal deletions and six haploinsufficient mutations were identified in individuals with eye abnormalities; an affected relative of one patient harboured the same mutation without an ocular phenotype. OTX2 truncations led to significant transactivation reduction. A missense variant was identified in another patient without eye abnormalities; however, studies revealed it was most likely not causative. In the mouse, truncations proximal to aa219 caused anophthalmia, while distal truncations and the missense variant were tolerated. During human embryogenesis, OTX2 was expressed in the posterior pituitary, retina, ear, thalamus, choroid plexus, and partially in the hypothalamus, but not in the anterior pituitary. Conclusions: OTX2 mutations are rarely associated with hypopituitarism in isolation without eye abnormalities, and may be variably penetrant, even within the same pedigree. Our data suggest that the endocrine phenotypes in patients with OTX2 mutations are of hypothalamic origin.


Subject(s)
Hypopituitarism/physiopathology , Microphthalmos/physiopathology , Neurons/physiology , Otx Transcription Factors/genetics , Pituitary Gland/physiopathology , Septo-Optic Dysplasia/physiopathology , Adolescent , Animals , Animals, Genetically Modified , Brazil , Cell Line , Child , Child, Preschool , Cohort Studies , Female , Humans , Hypopituitarism/embryology , Hypopituitarism/genetics , Hypothalamus/cytology , Infant , Male , Mice , Microphthalmos/embryology , Microphthalmos/genetics , Mutation , Neurons/pathology , Pedigree , Pituitary Gland/embryology , Pituitary Gland/pathology , Septo-Optic Dysplasia/embryology , Septo-Optic Dysplasia/genetics , United Kingdom
9.
Horm Res Paediatr ; 93(3): 197-205, 2020.
Article in English | MEDLINE | ID: mdl-32799208

ABSTRACT

BACKGROUND: The utility of insulin-like growth factor type 1 (IGF-1) is well established in the diagnosis of growth hormone deficiency (GHD), whereas IGF-binding protein type 3 (IGFBP-3) has a more controversial role. Most studies evaluated the value of these peptides by assessing their sensitivity and specificity but not considering the low prevalence of GHD among short children (<2%). OBJECTIVE: To evaluate the utility of basal IGF-1 and IGFBP-3 values in the GHD diagnosis process with a Bayesian approach, based on pre- and post-test probability. METHODS: We determined ROC curves, sensitivity, specificity, and positive and negative predictive values for IGF-1 and IGFBP-3 obtained from patients with GHD (n = 48) and GH-sufficient children (n = 175). The data were also analyzed by classifying the children into early childhood and late childhood (girls and boys younger and older than 8 and 9 years, respectively). RESULTS: The area under the curve (AUC) of the receiver operating characteristic curve of IGF-1-SDS (standard deviation score) was greater than that of IGFBP-3-SDS (AUC 0.886 and 0.786, respectively, p = 0.001). In early childhood, the AUC of IGFBP-3-SDS was significantly improved (0.866) and similar to IGF-1-SDS (0.898). IGF-1-SDS, in comparison to IGFBP-3-SDS, had a greater sensitivity (92 vs. 45.8%, respectively), lower specificity (69 vs. 93.8%, respectively), and lower positive predictive value (5.7 vs. 13.1%, respectively), with similar negative predictive values. CONCLUSION: IGF-1-SDS is a useful screening tool in the diagnosis of GHD. Although IGFBP-3-SDS lacks sensitivity, its high specificity supports the role to confirm GHD in short children, especially in early childhood. This strategy could simplify and reduce the necessity of a second laborious and expensive GH stimulation test to confirm the diagnosis of GHD.


Subject(s)
Growth Disorders/blood , Growth Disorders/diagnosis , Human Growth Hormone/deficiency , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/metabolism , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Retrospective Studies
10.
Arch Endocrinol Metab ; 63(2): 167-174, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31090814

ABSTRACT

The first description of patients with combined pituitary hormone deficiencies (CPHD) caused by PROP1 mutations was made 20 years ago. Here we updated the clinical and genetic characteristics of patients with PROP1 mutations and summarized the phenotypes of 14 patients with 7 different pathogenic PROP1 mutations followed at the Hospital das Clínicas of the University of Sao Paulo. In addition to deficiencies in GH, TSH, PRL and gonadotropins some patients develop late ACTH deficiency. Therefore, patients with PROP1 mutations require permanent surveillance. On magnetic resonance imaging, the pituitary stalk is normal, and the posterior lobe is in the normal position. The anterior lobe in patients with PROP1 mutations is usually hypoplastic but may be normal or even enlarged. Bi-allelic PROP1 mutations are currently the most frequently recognized genetic cause of CPHD worldwide. PROP1 defects occur more frequently among offspring of consanguineous parents and familial cases, but they also occur in sporadic cases, especially in countries in which the prevalence of PROP1 mutations is relatively high. We classified all reported PROP1 variants described to date according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines: 29 were pathogenic, 2 were likely pathogenic, and 2 were of unknown significance. An expansion of the phenotype of patients with PROP1 mutations was observed since the first description 20 years ago: variable anterior pituitary size, different pathogenic mutations, and late development of ACTH deficiency. PROP1 mutations are the most common cause of autosomal recessive CPHD with a topic posterior pituitary lobe. Arch Endocrinol Metab. 2019;63(2):167-74.


Subject(s)
Homeodomain Proteins/genetics , Hypopituitarism/genetics , Mutation/genetics , Female , Humans , Hypopituitarism/diagnosis , Male , Phenotype , Septo-Optic Dysplasia/genetics
11.
Endocr Connect ; 8(5): 590-595, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30959475

ABSTRACT

AIM: Congenital hypopituitarism has an incidence of 1:3500-10,000 births and is defined by the impaired production of pituitary hormones. Early diagnosis has an impact on management and genetic counselling. The clinical and genetic heterogeneity of hypopituitarism poses difficulties to select the order of genes to analyse. The objective of our study is to screen hypopituitarism genes (candidate and previously related genes) simultaneously using a target gene panel in patients with congenital hypopituitarism. METHODS: Screening of 117 subjects with congenital hypopituitarism for pathogenic variants in 26 genes associated with congenital hypopituitarism by massively parallel sequencing using a customized target gene panel. RESULTS: We found three novel pathogenic variants in OTX2 c.295C>T:p.Gln99*, GLI2 c.1681G>T:p.Glu561* and GHRHR c.820_821insC:p.Asp274Alafs*113, and the previously reported variants in GHRHR c.57+1G>A and PROP1 [c.301_302delAG];[c.109+1G>A]. CONCLUSIONS: Our results indicate that a custom-designed panel is an efficient method to screen simultaneously variants of biological and clinical relevance for congenital GH deficiency. A genetic diagnosis was possible in 5 out of 117 (4%) patients of our cohort. We identified three novel pathogenic variants in GHRHR, OTX2 and GLI2 expanding the spectrum of variants associated with congenital hypopituitarism.

12.
Arch. endocrinol. metab. (Online) ; 63(2): 167-174, Mar.-Apr. 2019. tab, graf
Article in English | LILACS | ID: biblio-1001214

ABSTRACT

ABSTRACT The first description of patients with combined pituitary hormone deficiencies (CPHD) caused by PROP1 mutations was made 20 years ago. Here we updated the clinical and genetic characteristics of patients with PROP1 mutations and summarized the phenotypes of 14 patients with 7 different pathogenic PROP1 mutations followed at the Hospital das Clínicas of the University of Sao Paulo. In addition to deficiencies in GH, TSH, PRL and gonadotropins some patients develop late ACTH deficiency. Therefore, patients with PROP1 mutations require permanent surveillance. On magnetic resonance imaging, the pituitary stalk is normal, and the posterior lobe is in the normal position. The anterior lobe in patients with PROP1 mutations is usually hypoplastic but may be normal or even enlarged. Bi-allelic PROP1 mutations are currently the most frequently recognized genetic cause of CPHD worldwide. PROP1 defects occur more frequently among offspring of consanguineous parents and familial cases, but they also occur in sporadic cases, especially in countries in which the prevalence of PROP1 mutations is relatively high. We classified all reported PROP1 variants described to date according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines: 29 were pathogenic, 2 were likely pathogenic, and 2 were of unknown significance. An expansion of the phenotype of patients with PROP1 mutations was observed since the first description 20 years ago: variable anterior pituitary size, different pathogenic mutations, and late development of ACTH deficiency. PROP1 mutations are the most common cause of autosomal recessive CPHD with a topic posterior pituitary lobe. Arch Endocrinol Metab. 2019;63(2):167-74


Subject(s)
Humans , Male , Female , Homeodomain Proteins/genetics , Mutation/genetics , Phenotype , Septo-Optic Dysplasia/genetics , Hypopituitarism/genetics
13.
J Pediatr Endocrinol Metab ; 32(2): 173-179, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30676998

ABSTRACT

Background When evaluating peripubertal short stature patients, the interpretation of insulin-like growth factor 1 (IGF-1) levels based on chronological age (CA) can be inaccurate due to the influence of sex steroids and, presently, there is no evidence to support the assessment of IGF-1 values according to bone age (BA) and pubertal status (PS). Our objective was to assess the discriminatory performance of IGF-1 levels based on CA, BA and PS in the diagnosis of growth hormone (GH) deficiency. Methods We evaluated IGF-1 levels from 154 peripubertal short stature patients classified as GH deficient (GHD, n=23) or non-GHD (n=131). IGF-1 was assayed by a chemiluminescent immunometric assay and transformed into standard deviation scores (SDS) according to CA (IGF-1-SDS-CA), BA (IGF-1-SDS-BA) and PS (IGF-1-SDS-PS). Results The performances of IGF-1-SDS-CA, IGF-1-SDS-BA and IGF-1-SDS-PS in the receiver operator characteristics (ROC) curves were similar. There were greater accuracy and specificity of IGF-1-SDS-PS (98.4% and 93.3%, respectively) and IGF-1-SDS-BA (92.7% and 90.1%, respectively) when compared to IGF-1-SDS-CA (65.6% and 69.5%, respectively). The post-test probability of the IGF-1-SDS was also improved when compared to PS and BA - 44.8% (IGF-1-SDS-PS), 16.8% (IGF-1-SDS-BA) and 5.1% (IGF-1-SDS-CA), with similar negative predictive values. Conclusions The evaluation of IGF-1 levels based on CA has a higher sensitivity than those based on BA or PS, which justify its use as a screening tool. Additionally, IGF-1 assessed by PS has the best positive predictive power for GHD diagnosis in peripubertal age and could reduce the necessity of a second GH stimulation test.


Subject(s)
Biomarkers/blood , Growth Disorders/diagnosis , Human Growth Hormone/deficiency , Insulin-Like Growth Factor I/analysis , Puberty , Adolescent , Child , Cross-Sectional Studies , Female , Follow-Up Studies , Growth Disorders/blood , Humans , Male , Predictive Value of Tests , ROC Curve , Retrospective Studies
14.
J Clin Endocrinol Metab ; 104(6): 2023-2030, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30602027

ABSTRACT

CONTEXT: Patients born small for gestational age (SGA) who present with persistent short stature could have an underlying genetic etiology that will account for prenatal and postnatal growth impairment. We applied a unique massive parallel sequencing approach in cohort of patients with exclusively nonsyndromic SGA to simultaneously interrogate for clinically substantial genetic variants. OBJECTIVE: To perform a genetic investigation of children with isolated short stature born SGA. DESIGN: Screening by exome (n = 16) or targeted gene panel (n = 39) sequencing. SETTING: Tertiary referral center for growth disorders. PATIENTS AND METHODS: We selected 55 patients born SGA with persistent short stature without an identified cause of short stature. MAIN OUTCOME MEASURES: Frequency of pathogenic findings. RESULTS: We identified heterozygous pathogenic or likely pathogenic genetic variants in 8 of 55 patients, all in genes already associated with growth disorders. Four of the genes are associated with growth plate development, IHH (n = 2), NPR2 (n = 2), SHOX (n = 1), and ACAN (n = 1), and two are involved in the RAS/MAPK pathway, PTPN11 (n = 1) and NF1 (n = 1). None of these patients had clinical findings that allowed for a clinical diagnosis. Seven patients were SGA only for length and one was SGA for both length and weight. CONCLUSION: These genomic approaches identified pathogenic or likely pathogenic genetic variants in 8 of 55 patients (15%). Six of the eight patients carried variants in genes associated with growth plate development, indicating that mild forms of skeletal dysplasia could be a cause of growth disorders in this group of patients.


Subject(s)
Body Height/genetics , Growth Disorders/diagnosis , High-Throughput Nucleotide Sequencing , Infant, Small for Gestational Age/growth & development , Body Weight/genetics , Child , Child, Preschool , Female , Genetic Markers/genetics , Growth Disorders/genetics , Humans , Infant, Newborn , Male , Exome Sequencing
16.
Clin Endocrinol (Oxf) ; 89(2): 164-177, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29668062

ABSTRACT

BACKGROUND: Follow-up data on patients with 46,XY partial gonadal dysgenesis (PGD) until adulthood are scarce, making information on prognosis difficult. OBJECTIVE: To analyse the long-term outcomes of patients with 46,XY PGD regarding testosterone production, germ cell tumour risk, genotype and psychosexual adaptation. METHODS: A retrospective longitudinal study of 33 patients (20 assigned male and 13 patients assigned female at birth). Molecular diagnosis was performed by Sanger sequencing or by targeted massively parallel sequencing of 63 genes related to disorders of sex development (DSDs). RESULTS: Age at first and last visit ranged from 0.1 to 43 and from 17 to 53 years, respectively. Spontaneous puberty was observed in 57% of the patients. During follow-up, six of them had a gonadectomy (four due to female gender, and two because of a gonadal tumour). At last evaluation, five of six patients had adult male testosterone levels (median 16.7 nmol/L, range 15.3-21.7 nmol/L) and elevated LH and FSH levels. Germ cell tumours were found in two postpubertal patients (one with an abdominal gonad and one patient with Frasier syndrome). Molecular diagnosis was possible in 11 patients (33%). NR5A1 variants were the most prevalent molecular defects (n = 6), and four of five patients harbouring them developed spontaneous puberty. Gender change was observed in four patients, two from each sex assignment group; all patients reported satisfaction with their gender at final evaluation. Sexual intercourse was reported by 81% of both gender and 82% of them reported satisfaction with their sexual lives. CONCLUSION: Spontaneous puberty was observed in 57% of the patients with 46,XY PGD, being NR5A1 defects the most prevalent ones among all the patients and in those with spontaneous puberty. Gender change due to gender dysphoria was reported by 12% of the patients. All the patients reported satisfaction with their final gender, and most of them with their sexual life.

17.
Neuroendocrinology ; 106(3): 203-210, 2018.
Article in English | MEDLINE | ID: mdl-28558376

ABSTRACT

BACKGROUND: Hypothalamic hamartoma (HH) represents the commonest cause of organic central precocious puberty (CPP). Follow-up of these patients in adulthood is scarce. OBJECTIVE: To describe the anthropometric, metabolic, and reproductive parameters of patients with CPP due to HH before and after treatment with gonadotropin-releasing hormone analog (GnRHa). METHODS: We performed a retrospective and cross-sectional study in a single tertiary center including 14 patients (7 females) with CPP due to HH. RESULTS: The mean duration of GnRHa treatment was 7.7 ± 2.4 years in boys and 7.9 ± 2.1 years in girls. GnRHa treatment was interrupted at the mean chronological age (CA) of 12.1 ± 1.1 years in boys and 10.7 ± 0.5 years in girls. At the last visit, the mean CA of the male and female patients was 21.5 ± 3.2 and 24 ± 3.9 years, respectively. Eleven of the 14 patients reached normal final height (FH) (standard deviation score -0.6 ± 0.9 for males and -0.6 ± 0.5 for females), all of them within the target height (TH) range. The remaining 3 patients had predicted height within the TH range. The mean body mass index and the percentage of body fat mass was significantly higher in females, with a higher prevalence of metabolic disorders. All patients presented normal gonadal function in adulthood, and 3 males fathered a child. CONCLUSION: All patients with CPP due to HH reached normal FH or near-FH. A higher prevalence of overweight/obesity and hypercholesterolemia was observed in the female patients. Finally, no reproductive disorder was identified in both sexes, indicating that HH per se has no deleterious effect on the gonadotropic axis in adulthood.


Subject(s)
Gonadotropin-Releasing Hormone/analogs & derivatives , Hamartoma/complications , Hypothalamic Diseases/complications , Puberty, Precocious/drug therapy , Puberty, Precocious/etiology , Adiposity/drug effects , Body Height/drug effects , Body Mass Index , Cross-Sectional Studies , Female , Gonadotropin-Releasing Hormone/therapeutic use , Hamartoma/drug therapy , Hamartoma/physiopathology , Humans , Hypothalamic Diseases/drug therapy , Hypothalamic Diseases/physiopathology , Longitudinal Studies , Male , Puberty, Precocious/physiopathology , Reproduction/drug effects , Retrospective Studies , Treatment Outcome , Young Adult
18.
Sex Dev ; 11(5-6): 238-247, 2017.
Article in English | MEDLINE | ID: mdl-29237170

ABSTRACT

Androgens are responsible for the development and maintenance of male sex characteristics. Dysfunctions in androgen action due to mutations in the androgen receptor gene (AR) can lead to androgen insensitivity syndrome (AIS) that can be classified as mild (MAIS), partial (PAIS), or complete (CAIS). We have analyzed functional effects of p.Ser760Thr, p.Leu831Phe, p.Ile899Phe, p.Leu769Val, and p.Pro905Arg mutations and the combination p.Gln799Glu + p.Cys807Phe that were identified in patients with PAIS or CAIS. The p.Leu769Val and p.Pro905Arg mutations showed complete disruption of AR action under physiological hormone concentrations; however, they differed in high DHT concentrations especially in the N/C terminal interaction assay. Mutations p.Ser760Thr, p.Leu831Phe, p.Ile899Phe presented transactivation activities higher than 20% of the wild type in physiological hormone concentrations and increased with higher DHT concentrations. However, each one showed a different profile in the N/C interaction assay. When p.Gln799Glu and p.Cys807Phe were analyzed in combination, transactivation activities <10% in physiologic hormone conditions indicated an association with a CAIS phenotype. We conclude that the functional analysis elucidated the role of mutant ARs, giving clues for the molecular mechanisms associated with different clinical AIS manifestations. Differences in hormone-dependent profiles may provide a basis for the response to treatment in each particular case.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , Receptors, Androgen/genetics , Adolescent , Adult , Child, Preschool , Female , Humans , Male , Mutation/genetics , Receptors, Androgen/metabolism , Two-Hybrid System Techniques , Young Adult
19.
J Endocr Soc ; 1(10): 1322-1330, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29264457

ABSTRACT

CONTEXT: Women with hypopituitarism have lower pregnancy rates after ovulation induction. Associated pituitary hormone deficiencies might play a role in this poorer outcome. OBJECTIVE: We evaluated fertility treatment and pregnancy outcomes in five women with childhood-onset combined pituitary hormone deficiencies (CPHD). PATIENTS AND METHODS: Five women with CPHD were referred for fertility treatment after adequacy of hormone replacement was determined. Patients were subjected to controlled ovarian stimulation (COS) for timed intercourse, intrauterine insemination, or in vitro fertilization, according to the presence or absence of other infertility factors (male or tubal). RESULTS: All women became pregnant. The number of COS attempts until pregnancy was achieved varied between 1 and 5. The duration of COS resulting in at least one dominant follicle varied between 9 and 28 days, and total gonadotropin consumed varied between 1200 and 3450 IU. Two patients with severely suppressed basal gonadotropin levels since an early age had a cancelled COS cycle. All pregnancies were singleton except one (monochorionic twin gestation). The gestational ages at birth ranged from 35 weeks to 39 weeks and 4 days; three patients underwent cesarean section, and two had vaginal deliveries. Only one newborn was small for gestational age (delivered at 35 weeks). CONCLUSION: Adequate hormonal replacement prior to ovarian stimulation resulted in successful pregnancies in patients with childhood-onset CPHD, indicating that hormone replacement, including growth hormone, is an important step prior to fertility treatments in these patients.

20.
Arch. endocrinol. metab. (Online) ; 61(6): 633-636, Dec. 2017. graf
Article in English | LILACS | ID: biblio-887602

ABSTRACT

SUMMARY Isolated growth hormone deficiency (IGHD) is the most common pituitary hormone deficiency and, clinically, patients have delayed bone age. High sequence similarity between CYP21A2 gene and CYP21A1P pseudogene poses difficulties for exome sequencing interpretation. A 7.5 year-old boy born to second-degree cousins presented with severe short stature (height SDS −3.7) and bone age of 6 years. Clonidine and combined pituitary stimulation tests revealed GH deficiency. Pituitary MRI was normal. The patient was successfully treated with rGH. Surprisingly, at 10.8 years, his bone age had advanced to 13 years, but physical exam, LH and testosterone levels remained prepubertal. An ACTH stimulation test disclosed a non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency explaining the bone age advancement and, therefore, treatment with cortisone acetate was added. The genetic diagnosis of a homozygous mutation in GHRHR (p.Leu144His), a homozygous CYP21A2 mutation (p.Val282Leu) and CYP21A1P pseudogene duplication was established by Sanger sequencing, MLPA and whole-exome sequencing. We report the unusual clinical presentation of a patient born to consanguineous parents with two recessive endocrine diseases: non-classic congenital adrenal hyperplasia modifying the classical GH deficiency phenotype. We used a method of paired read mapping aided by neighbouring mis-matches to overcome the challenges of exome-sequencing in the presence of a pseudogene.


Subject(s)
Humans , Male , Infant , Child , Bone Diseases, Developmental/genetics , Steroid 21-Hydroxylase/genetics , Receptors, Neuropeptide/genetics , Adrenal Hyperplasia, Congenital/genetics , Dwarfism, Pituitary/genetics , Pedigree , Phenotype , Bone Diseases, Developmental/etiology , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Adrenal Hyperplasia, Congenital/complications , Consanguinity , Dwarfism, Pituitary/complications , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...