Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Prim Care ; 51(2): 233-251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692772

ABSTRACT

Cognitive impairment is a common problem in the geriatric population and is characterized by variable symptoms of memory difficulties, executive dysfunction, language or visuospatial problems, and behavioral changes. It is imperative that primary care clinicians recognize and differentiate the variable symptoms associated with cognitive impairment from changes attributable to normal aging or secondary to other medical conditions. A thorough evaluation for potentially reversible causes of dementia is required before diagnosis with a neurodegenerative dementia. Other abnormal neurologic findings, rapid progression, or early age of onset are red flags that merit referral to neurology for more specialized evaluation and treatment.


Subject(s)
Cognitive Dysfunction , Dementia , Primary Health Care , Humans , Cognitive Dysfunction/diagnosis , Dementia/diagnosis , Aged , Neuropsychological Tests , Diagnosis, Differential
2.
Arch Virol ; 167(2): 659-663, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35066682

ABSTRACT

Adenoviruses have been identified in a wide variety of avian species, and in some species, they have been shown to cause disease and increase mortality. As part of an endeavor to investigate viruses associated with common terns (Sterna hirundo), a novel adenovirus was identified in fecal samples from two common terns on Gull Island, Lake Ontario, Canada. The coding-complete genome sequence of the new adenovirus is 31,094 bp, containing 28 putative genes, and this is the first adenovirus to be associated with terns. The virus was identified in two out of 13 fecal samples from tern chicks, and it was found to be most closely related to duck adenovirus 1, with the DNA polymerase sharing 58% amino acid sequence identity. Phylogenetic analysis based on DNA polymerase protein sequences showed that the new virus forms a distinct sub-branch within the atadenovirus clade and likely represents a new species in this genus.


Subject(s)
Adenoviridae Infections , Charadriiformes , Adenoviridae , Adenoviridae Infections/veterinary , Animals , Chickens , Phylogeny
3.
PLoS One ; 15(10): e0239180, 2020.
Article in English | MEDLINE | ID: mdl-33057336

ABSTRACT

Dietary specialization, exploiting a small fraction of available food resources, is commonly reported for gulls and skuas. Predation of birds by these species is usually considered a specialist strategy employed by the minority of the population but non-specialists also predate birds and may actually have a greater impact on the prey species. To date, most studies have focused on predatory bird-specialists, down-playing the possible importance of opportunistic predation by non-specialists. We addressed this by studying diet (regurgitated pellets and prey remains) and behavior of breeding Herring Gulls (Larus argentatus) over three summers at Gull Island, a mixed-species breeding colony in Lake Ontario. One-third of all pellets analyzed contained bird remains, primarily the most numerous breeding bird: Ring-billed Gull (L. delawarensis) chicks (51%) and adults (36%). Although all but one pair of Herring Gulls ate birds, all pairs maintained broad and mostly similar diets, with birds accounting for at most one-third of prey. Behavior also indicated that Herring Gulls at Gull Island were not predatory bird-specialists because predation was too infrequent to meet energetic requirements, was largely unsuccessful and was only ever observed when Ring-billed Gulls strayed into Herring Gull breeding territories. Instead, bird predation appeared mainly opportunistic, increasing with seasonal availability, access to shoreline, proximity to nesting Ring-billed Gulls and breeding territory size. Compared with predatory specialist Herring Gulls in the same region, individuals that predated birds at Gull Island did not display specialist behaviors and killed six times fewer birds (0.1-0.4 per day, on average) but were over 20 times more numerous (98% of the population versus 4%). Thus, our results indicate that opportunistic predation by non-specialists may have important consequences for prey species. Since opportunistic predation cannot be effectively managed using techniques widely advocated for specialist predators, it is essential to investigate cause of predation by large gulls prior to lethal management.


Subject(s)
Charadriiformes/physiology , Animals , Birds , Breeding , Diet , Female , Lakes , Male , Ontario , Predatory Behavior , Seasons
4.
mBio ; 11(5)2020 09 01.
Article in English | MEDLINE | ID: mdl-32873755

ABSTRACT

The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.IMPORTANCE Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability.


Subject(s)
DNA Viruses/classification , Data Mining , Genome, Viral , Metagenome , Capsid Proteins/genetics , DNA Viruses/genetics , Metagenomics , RNA Viruses/classification , RNA Viruses/genetics , Tombusviridae/classification , Tombusviridae/genetics
5.
PeerJ ; 4: e1959, 2016.
Article in English | MEDLINE | ID: mdl-27231646

ABSTRACT

In July 2014, we observed premature feather loss (PFL) among non-sibling, common tern Sterna hirundo chicks between two and four weeks of age at Gull Island in northern Lake Ontario, Canada. Rarely observed in wild birds, to our knowledge PFL has not been recorded in terns since 1974, despite the subsequent banding of hundreds of thousands of tern chicks across North America alone. The prevalence, 5% of chicks (9/167), and extent of feather loss we report is more extreme than in previous reports for common terns but was not accompanied by other aberrant developmental or physical deformities. Complete feather loss from all body areas (wing, tail, head and body) occurred over a period of a few days but all affected chicks appeared vigorous and quickly began to grow replacement feathers. All but one chick (recovered dead and submitted for post-mortem) most likely fledged 10-20 days after normal fledging age. We found no evidence of feather dystrophy or concurrent developmental abnormalities unusual among affected chicks. Thus, the PFL we observed among common terns in 2014 was largely of unknown origin. There was striking temporal association between the onset of PFL and persistent strong southwesterly winds that caused extensive mixing of near-shore surface water with cool, deep lake waters. One hypothesis is that PFL may have been caused by unidentified pathogens or toxins welling up from these deep waters along the shoreline but current data are insufficient to test this. PFL was not observed among common terns at Gull Island in 2015, although we did observe similar feather loss in a herring gull Larus argentatus chick in that year. Comparison with sporadic records of PFL in other seabirds suggests that PFL may be a rare, but non-specific, response to a range of potential stressors. PFL is now known for gulls, penguins and terns.

6.
J Anim Ecol ; 85(2): 476-86, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26542748

ABSTRACT

Post-natal growth is an important life-history trait and can be a sensitive indicator of ecological stress. For over 50 years, monotonic (never-decreasing) growth has been viewed as the predominant trajectory of post-natal mass change in most animal species, notably among birds. However, prevailing analytical approaches and energetic constraints may limit detection of non-monotonic (or multiphasic), determinate growth patterns, such as mass recession in birds (weight loss prior to fledging, preceded by overshooting adult mass), which is currently believed to be restricted to few taxa. Energetic surplus and shortfall are widespread conditions that can directly influence the degree of mass overshooting and recession. Thus, we hypothesize that in many species, prevailing energetic constraints force mass change away from a fundamental non-monotonic trajectory to instead follow a monotonic curve. We observed highly non-monotonic, mass change trajectories (overshooting adult mass by up to almost 20%) among common tern Sterna hirundo chicks, a well-studied species long-established as growing monotonically. We quantified the prevalence and magnitude of non-monotonic mass change prior to fledging for 313 common tern chicks that successfully fledged from two discrete populations in multiple years. We used a new approach for analysing non-monotonic curves to examine differences in mass change trajectories between populations under contrasting abiotic (freshwater vs. saltwater) and biotic stresses (low rates of food provisioning). Some degree of mass recession occurred in 73% of all study chicks. Overshooting adult mass followed by extensive mass recession was most prevalent at our freshwater colony, being detected among 34-38% of chicks annually. Non-monotonic trajectories were less marked in populations experiencing ecological stress and among lower quality individuals. Chicks that were provisioned at higher rates were more likely to both overshoot adult mass and experience subsequent mass recession. Our results in common terns provide strong support for the hypothesis that non-monotonic trajectories are the fundamental pattern of mass change but are constrained to be monotonic under energetic shortfall. This justifies future tests of the generality of this hypothesis across a broad range of taxa. We also demonstrate a recent analytical tool that prevents routine fitting of monotonic curves without prior investigation of non-monotonic trends.


Subject(s)
Charadriiformes/physiology , Energy Intake , Animals , Charadriiformes/growth & development , Massachusetts , Models, Biological , Ontario , Seasons
7.
PLoS One ; 9(11): e111987, 2014.
Article in English | MEDLINE | ID: mdl-25375105

ABSTRACT

Age is a key component of fitness, affecting survival and reproductive capacities. Where it is not possible to study known individuals from birth, morphometrics (predominantly patterns of plumage development for birds) are most often used to estimate age. Although criteria for age estimations exist for many species, the degree to which these criteria improve the precision of estimates remains to be tested, restricting their widespread acceptance. We develop a photographic tool for estimating ages of Common Tern (Sterna hirundo) chicks and test it using 100 human observers of varying prior experience across four breeding colonies (three North American sites and one European site) and under controlled laboratory conditions. We followed the design approach of other morphometric tools, expanding it to create a user-friendly guide (divided into six age groupings). The majority (86%) of observers improved in chick-aging accuracy when using the tool by an average of 20.1% (±1.4 SE) and correctly estimated 60.3% (±1.4) of chick ages. This was similar to the intrinsic aging ability of our best field observer (63.3%). Observers with limited experience showed the greatest increases in chick-aging accuracy over experienced observers who likely had established a method for estimating chick ages prior to using the tool. Even the best observers only correctly estimated ages of chicks 62.9% (±2.8) of the time in the field and 84.0% (±2.9) of the time in the lab when using the tool and typically underestimated ages. This indicates that developmental variation between individual chicks can prevent completely reliable age estimates and corroborates the few existing data that suggest that morphometric criteria fail to achieve robust levels of accuracy and may introduce error into studies that rely on them. We conclude that novel approaches for estimating age, not only morphometric criteria, must be pursued.


Subject(s)
Charadriiformes/anatomy & histology , Feathers/growth & development , Photography/methods , Animals , Charadriiformes/classification , Charadriiformes/growth & development , Humans , Observer Variation
8.
PLoS One ; 8(8): e70481, 2013.
Article in English | MEDLINE | ID: mdl-23950941

ABSTRACT

Sleep-wake cycling is controlled by the complex interplay between two brain systems, one which controls vigilance state, regulating the transition between sleep and wake, and the other circadian, which communicates time-of-day. Together, they align sleep appropriately with energetic need and the day-night cycle. Neural circuits connect brain stem sites that regulate vigilance state with the suprachiasmatic nucleus (SCN), the master circadian clock, but the function of these connections has been unknown. Coupling discrete stimulation of pontine nuclei controlling vigilance state with analytical chemical measurements of intra-SCN microdialysates in mouse, we found significant neurotransmitter release at the SCN and, concomitantly, resetting of behavioral circadian rhythms. Depending upon stimulus conditions and time-of-day, SCN acetylcholine and/or glutamate levels were augmented and generated shifts of behavioral rhythms. These results establish modes of neurochemical communication from brain regions controlling vigilance state to the central circadian clock, with behavioral consequences. They suggest a basis for dynamic integration across brain systems that regulate vigilance states, and a potential vulnerability to altered communication in sleep disorders.


Subject(s)
Brain Stem/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Acetylcholine/metabolism , Animals , Electric Stimulation , Glutamic Acid/metabolism , Male , Mice , Sleep/physiology , Suprachiasmatic Nucleus/physiology , Wakefulness/physiology
9.
Integr Zool ; 7(2): 121-36, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22691196

ABSTRACT

There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level.


Subject(s)
Behavior, Animal/physiology , Birds/physiology , Body Temperature Regulation/physiology , Climate Change , Models, Biological , Stress, Physiological/physiology , Temperature , Animals , Birds/anatomy & histology , Geography , Oceans and Seas , Sunlight
10.
PLoS One ; 3(6): e2480, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-18560568

ABSTRACT

Conservationists are continually seeking new strategies to reverse population declines and safeguard against species extinctions. Here we evaluate the potential efficacy of a recently proposed approach to offset a major anthropogenic threat to many marine vertebrates: incidental bycatch in commercial fisheries operations. This new approach, compensatory mitigation for marine bycatch (CMMB), is conceived as a way to replace or reduce mandated restrictions on fishing activities with compensatory activities (e.g., removal of introduced predators from islands) funded by levies placed on fishers. While efforts are underway to bring CMMB into policy discussions, to date there has not been a detailed evaluation of CMMB's potential as a conservation tool, and in particular, a list of necessary and sufficient criteria that CMMB must meet to be an effective conservation strategy. Here we present a list of criteria to assess CMMB that are tied to critical ecological aspects of the species targeted for conservation, the range of possible mitigation activities, and the multi-species impact of fisheries bycatch. We conclude that, overall, CMMB has little potential for benefit and a substantial potential for harm if implemented to solve most fisheries bycatch problems. In particular, CMMB is likely to be effective only when applied to short-lived and highly-fecund species (not the characteristics of most bycatch-impacted species) and to fisheries that take few non-target species, and especially few non-seabird species (not the characteristics of most fisheries). Thus, CMMB appears to have limited application and should only be implemented after rigorous appraisal on a case-specific basis; otherwise it has the potential to accelerate declines of marine species currently threatened by fisheries bycatch.


Subject(s)
Marine Biology , Animals , Conservation of Natural Resources , Fisheries
11.
Ecol Appl ; 16(1): 419-32, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16705990

ABSTRACT

Simulation modeling was used to reconstruct Black-browed Albatross (Diomedea melanophris) population trends. Close approximations to observed data were accomplished by annually varying survival rates, reproductive success, and probabilities of returning to breed given success in previous years. The temporal shift in annual values coincided with the start of longline fishing at South Georgia and potential changes in krill abundance. We used 23 years of demographic data from long-term studies of a breeding colony of this species at Bird Island, South Georgia, to validate our model. When we used annual parameter estimates for survival, reproductive success, and probabilities of returning to breed given success in previous years, our model trajectory closely followed the observed changes in breeding population size over time. Population growth rate was below replacement (lambda < 1) in most years and was most sensitive to changes in adult survival. This supports the recent IUCN uplisting of this species from "Vulnerable" to "Endangered." Comparison of pre-1988 and post-1988 demography (before and after the inception of a longline fishery in the breeding area) reveals a decrease in lambda from 0.963 to 0.910. A life table response experiment (LTRE) showed that this decline in lambda was caused mostly by declines in survival of adults. If 1988-1998 demographic rates are maintained, the model predicts a 98% chance of a population of fewer than 25 pairs within 78 years. For this population to recover to a status under which it could be "delisted," a 10% increase in survival of all age classes would be needed.


Subject(s)
Birds/physiology , Breeding , Predatory Behavior , Survival Rate , Animals , Environment , Georgia , Mortality , Population Density , Reproduction/physiology , Time Factors
12.
Mol Carcinog ; 42(3): 159-69, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15605363

ABSTRACT

Neuroblastoma (NB) is the most common solid pediatric tumor. IMR-32 cells are a highly malignant human NB cell line with uncontrolled proliferation but with the potential to be differentiated under specific conditions. Preliminary research indicated that connexin 43 (Cx43), the most widespread of the Cx family, is aberrantly located in IMR-32 cells, which renders these cells incapable of gap junction (GJ) intercellular communication. Functioning GJ intercellular communication has been strongly associated with growth control and a decrease in tumorigenicity. 8-br-cAMP, known to initiate the differentiation process in cancer cells, was used to examine changes in Cx43 localization and expression via immunocytochemistry, Western blot analysis, and flow cytometry. Exposure of IMR-32 cells to 8-br-cAMP decreased cell proliferation, restored the abnormally localized Cx43 from around the nucleus to the cell membrane, increased de novo Cx43 protein expression, and appeared to phosphorylate Cx43 on serine (Ser) 255 and Ser262. Forskolin, an activator of cAMP dependent protein kinase (PKA), produced identical results to 8-br-cAMP demonstrating the effect that was not unique to a cAMP analog. The use of a PKA inhibitor further confirmed the specificity of 8-br-cAMP and forskolin's effect on Cx43. The cellular relocation of Cx43, combined with the increased protein expression, established first ever GJ intercellular communication between IMR-32 cells as revealed by scrape loading. These results suggest that the GJ-mediated return of growth control, as a prerequisite for further differentiation, offers a new therapeutic avenue in the treatment of NB.


Subject(s)
Connexin 43/analysis , Connexin 43/metabolism , Gap Junctions/metabolism , Neuroblastoma/chemistry , Neuroblastoma/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Brefeldin A/pharmacology , Cell Communication/drug effects , Cell Communication/physiology , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cycloheximide/pharmacology , Dactinomycin/pharmacology , Gap Junctions/drug effects , Humans , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...