Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3165, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576829

ABSTRACT

SAMHD1 regulates cellular 2'-deoxynucleoside-5'-triphosphate (dNTP) homeostasis by catalysing the hydrolysis of dNTPs into 2'-deoxynucleosides and triphosphate. In CD4+ myeloid lineage and resting T-cells, SAMHD1 blocks HIV-1 and other viral infections by depletion of the dNTP pool to a level that cannot support replication. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome and hypermutated cancers. Furthermore, SAMHD1 sensitises cancer cells to nucleoside-analogue anti-cancer therapies and is linked with DNA repair and suppression of the interferon response to cytosolic nucleic acids. Nevertheless, despite its requirement in these processes, the fundamental mechanism of SAMHD1-catalysed dNTP hydrolysis remained unknown. Here, we present structural and enzymological data showing that SAMHD1 utilises an active site, bi-metallic iron-magnesium centre that positions a hydroxide nucleophile in-line with the Pα-O5' bond to catalyse phosphoester bond hydrolysis. This precise molecular mechanism for SAMHD1 catalysis, reveals how SAMHD1 down-regulates cellular dNTP and modulates the efficacy of nucleoside-based anti-cancer and anti-viral therapies.


Subject(s)
Nucleoside-Triphosphatase/chemistry , SAM Domain and HD Domain-Containing Protein 1/chemistry , Water/chemistry , Autoimmune Diseases of the Nervous System/metabolism , Catalytic Domain , Crystallography, X-Ray , HIV-1/genetics , HIV-1/physiology , Humans , Hydrolysis , Interferons , Models, Molecular , Mutation , Nervous System Malformations/metabolism , Polyphosphates , Protein Conformation , SAM Domain and HD Domain-Containing Protein 1/genetics , Virus Replication/physiology
2.
ACS Chem Biol ; 12(11): 2906-2914, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29045126

ABSTRACT

The mitotic kinase Aurora-A and its partner protein TPX2 (Targeting Protein for Xenopus kinesin-like protein 2) are overexpressed in cancers, and it has been proposed that they work together as an oncogenic holoenzyme. TPX2 is responsible for activating Aurora-A during mitosis, ensuring proper cell division. Disruption of the interface with TPX2 is therefore a potential target for novel anticancer drugs that exploit the increased sensitivity of cancer cells to mitotic stress. Here, we investigate the interface using coprecipitation assays and isothermal titration calorimetry to quantify the energetic contribution of individual residues of TPX2. Residues Tyr8, Tyr10, Phe16, and Trp34 of TPX2 are shown to be crucial for robust complex formation, suggesting that the interaction could be abrogated through blocking any of the three pockets on Aurora-A that complement these residues. Phosphorylation of Aurora-A on Thr288 is also necessary for high-affinity binding, and here we identify arginine residues that communicate the phosphorylation of Thr288 to the TPX2 binding site. With these findings in mind, we conducted a high-throughput X-ray crystallography-based screen of 1255 fragments against Aurora-A and identified 59 hits. Over three-quarters of these hits bound to the pockets described above, both validating our identification of hotspots and demonstrating the druggability of this protein-protein interaction. Our study exemplifies the potential of high-throughput crystallography facilities such as XChem to aid drug discovery. These results will accelerate the development of chemical inhibitors of the Aurora-A/TPX2 interaction.


Subject(s)
Aurora Kinase A/metabolism , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Protein Interaction Maps/drug effects , Aurora Kinase A/chemistry , Binding Sites/drug effects , Cell Cycle Proteins/chemistry , Crystallography, X-Ray , Drug Discovery , Humans , Ligands , Microtubule-Associated Proteins/chemistry , Molecular Docking Simulation , Nuclear Proteins/chemistry , Protein Binding/drug effects , Thiazolidines/chemistry , Thiazolidines/pharmacology
3.
PLoS Pathog ; 11(10): e1005194, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26431200

ABSTRACT

SAMHD1 restricts HIV-1 infection of myeloid-lineage and resting CD4+ T-cells. Most likely this occurs through deoxynucleoside triphosphate triphosphohydrolase activity that reduces cellular dNTP to a level where reverse transcriptase cannot function, although alternative mechanisms have been proposed recently. Here, we present combined structural and virological data demonstrating that in addition to allosteric activation and triphosphohydrolase activity, restriction correlates with the capacity of SAMHD1 to form "long-lived" enzymatically competent tetramers. Tetramer disruption invariably abolishes restriction but has varied effects on in vitro triphosphohydrolase activity. SAMHD1 phosphorylation also ablates restriction and tetramer formation but without affecting triphosphohydrolase steady-state kinetics. However phospho-SAMHD1 is unable to catalyse dNTP turnover under conditions of nucleotide depletion. Based on our findings we propose a model for phosphorylation-dependent regulation of SAMHD1 activity where dephosphorylation switches housekeeping SAMHD1 found in cycling cells to a high-activity stable tetrameric form that depletes and maintains low levels of dNTPs in differentiated cells.


Subject(s)
Biocatalysis , HIV-1/pathogenicity , Monomeric GTP-Binding Proteins/metabolism , Cell Line , Chromatography, Gel , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Flow Cytometry , Humans , Monomeric GTP-Binding Proteins/chemistry , Phosphorylation , Protein Conformation , Reverse Transcriptase Polymerase Chain Reaction , SAM Domain and HD Domain-Containing Protein 1 , Spectrophotometry, Atomic
4.
Antimicrob Agents Chemother ; 59(1): 186-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25331707

ABSTRACT

The development of deoxynucleoside triphosphate (dNTP)-based drugs requires a quantitative understanding of any inhibition, activation, or hydrolysis by off-target cellular enzymes. SAMHD1 is a regulatory dNTP-triphosphohydrolase that inhibits HIV-1 replication in human myeloid cells. We describe here an enzyme-coupled assay for quantifying the activation, inhibition, and hydrolysis of dNTPs, nucleotide analogues, and nucleotide analogue inhibitors by triphosphohydrolase enzymes. The assay facilitates mechanistic studies of triphosphohydrolase enzymes and the quantification of off-target effects of nucleotide-based antiviral and chemotherapeutic agents.


Subject(s)
Acid Anhydride Hydrolases/analysis , Biological Assay/methods , Drug Evaluation, Preclinical/methods , Monomeric GTP-Binding Proteins/analysis , Monomeric GTP-Binding Proteins/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Acyclovir/chemistry , Acyclovir/metabolism , Acyclovir/pharmacology , Adenine Nucleotides/chemistry , Adenine Nucleotides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Arabinonucleosides/chemistry , Arabinonucleosides/pharmacology , Catalysis/drug effects , Clofarabine , Deoxyribonucleotides/chemistry , Deoxyribonucleotides/metabolism , Dose-Response Relationship, Drug , Ganciclovir/chemistry , Ganciclovir/pharmacology , HIV-1 , Hydrolysis , SAM Domain and HD Domain-Containing Protein 1
5.
J Biol Chem ; 286(52): 45073-82, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22030392

ABSTRACT

Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe(301), Val(319), and Asp(338) in collagen binding. Intriguingly, Phe(301) is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.


Subject(s)
Matrix Metalloproteinase 1/chemistry , Binding Sites/physiology , Collagen/chemistry , Collagen/genetics , Collagen/metabolism , Crystallography, X-Ray , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...