Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 58(17): 6747-52, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26288344

ABSTRACT

Herein we describe the optimization of a series of PDE4 inhibitors, with special focus on solubility and pharamcokinetics, to clinical compound 2, 4-(8-(3-fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic acid. Although compound 2 produces emesis in humans when given as a single dose, its exemplary pharmacokinetic properties enabled a novel dosing regime comprising multiple escalating doses and the resultant achievement of high plasma drug levels without associated nausea or emesis.


Subject(s)
Cyclohexanecarboxylic Acids/chemistry , Naphthyridines/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Cyclohexanecarboxylic Acids/pharmacokinetics , Cyclohexanecarboxylic Acids/pharmacology , Dose-Response Relationship, Drug , Humans , Naphthyridines/pharmacokinetics , Naphthyridines/pharmacology , Nausea/chemically induced , Phosphodiesterase 4 Inhibitors/pharmacokinetics , Phosphodiesterase 4 Inhibitors/pharmacology , Rats , Solubility , Structure-Activity Relationship , Thermodynamics , Vomiting/chemically induced
2.
Bioorg Med Chem Lett ; 24(17): 4341-7, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25065493

ABSTRACT

The optimisation of two series of 4-hydroxybenzothiazolone derived ß2-adrenoceptor agonists, bearing α-substituted cyclopentyl and ß-phenethyl amino-substituents, as inhaled long-acting bronchodilators is described. Analogues were selected for synthesis using a lipophilicity based hypothesis to achieve the targeted rapid onset of action in combination with a long duration of action. The profiling of the two series led to identification of the α-substituted cyclopentyl analogue 2 as the optimal compound with a comparable profile to the inhaled once-daily long-acting ß2-adrenoceptor agonist indacaterol. On the basis of these data 2 was promoted as the backup development candidate to indacaterol from the Novartis LABA project.


Subject(s)
Adrenergic beta-2 Receptor Agonists/administration & dosage , Adrenergic beta-2 Receptor Agonists/pharmacology , Benzothiazoles/administration & dosage , Benzothiazoles/pharmacology , Receptors, Adrenergic, beta-2/metabolism , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/chemistry , Animals , Benzothiazoles/chemistry , Dose-Response Relationship, Drug , Guinea Pigs , Molecular Structure
3.
Bioorg Med Chem ; 21(21): 6582-91, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24021582

ABSTRACT

Optimization of a 7-azaindole-3-acetic acid CRTh2 receptor antagonist chemotype derived from high throughput screening furnished a highly selective compound NVP-QAV680 with low nM functional potency for inhibition of CRTh2 driven human eosinophil and Th2 lymphocyte activation in vitro. The molecule exhibited good oral bioavailability in the rat, combined with efficacy in rodent CRTh2-dependent mechanistic and allergic disease models and was suitable for clinical development.


Subject(s)
Indolizines/chemistry , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Administration, Oral , Animals , CHO Cells , Cricetinae , Cricetulus , Dermatitis, Contact/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Eosinophils/drug effects , Eosinophils/metabolism , Half-Life , Humans , Hypersensitivity/drug therapy , Indolizines/pharmacokinetics , Indolizines/therapeutic use , Mice , Mice, Inbred BALB C , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Structure-Activity Relationship , Th2 Cells/immunology , Th2 Cells/metabolism
4.
J Med Chem ; 55(17): 7472-9, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22889281

ABSTRACT

The solubility-driven optimization of a series of 1,7-napthyridine phosphodiesterase-4 inhibitors is described. Directed structural changes resulted in increased aqueous solubility, enabling superior pharmacokinetic properties with retention of PDE4 inhibition. A range of potent and orally bioavailable compounds with good in vivo efficacy in animal models of inflammation and reduced emetic potential compared to previously described drugs were synthesized. Compound 2d was taken forward as a clinical candidate for the treatment of COPD.


Subject(s)
Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacology , Animals , Cells, Cultured , Disease Models, Animal , Drug Design , Drug Evaluation, Preclinical , Humans , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Phosphodiesterase 4 Inhibitors/pharmacokinetics , Phosphodiesterase 4 Inhibitors/therapeutic use , Rats , Solubility , Vomiting/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...