Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 60(24): 9203-13, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26576672

ABSTRACT

This work uses Monte Carlo radiation transport simulation to assess the potential benefits of gold nanoparticles (AuNP) in the treatment of neovascular age-related macular degeneration with stereotactic radiosurgery. Clinically, a 100 kVp x-ray beam of 4 mm diameter is aimed at the macula to deliver an ablative dose in a single fraction. In the transport model, AuNP accumulated at the bottom of the macula are targeted with a source representative of the clinical beam in order to provide enhanced dose to the diseased macular endothelial cells. It is observed that, because of the AuNP, the dose to the endothelial cells can be significantly enhanced, allowing for greater sparing of optic nerve, retina and other neighboring healthy tissue. For 20 nm diameter AuNP concentration of 32 mg g(-1), which has been shown to be achievable in vivo, a dose enhancement ratio (DER) of 1.97 was found to be possible, which could potentially be increased through appropriate optimization of beam quality and/or AuNP targeting. A significant enhancement in dose is seen in the vicinity of the AuNP layer within 30 µm, peaked at the AuNP-tissue interface. Different angular tilting of the 4 mm beam results in a similar enhancement. The DER inside and in the penumbra of the 4 mm irradiation-field are almost the same while the actual delivered dose is more than one order of magnitude lower outside the field leading to normal tissue sparing. The prescribed dose to macular endothelial cells can be delivered using almost half of the radiation allowing reduction of dose to the neighboring organs such as retina/optic nerve by 49% when compared to a treatment without AuNP.


Subject(s)
Endothelium, Vascular/pathology , Gold/chemistry , Macular Degeneration/surgery , Metal Nanoparticles/chemistry , Monte Carlo Method , Neovascularization, Pathologic , Radiosurgery/methods , Endothelium, Vascular/radiation effects , Eye/physiopathology , Eye/radiation effects , Humans , Macular Degeneration/pathology , X-Rays
2.
J Biomed Opt ; 5(3): 300-6, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10958616

ABSTRACT

Spectral imaging permits two-dimensional mapping of the backscattering properties of biological systems. Such mapping requires broadband illumination of the entire area of interest. However, imaging of turbid biological media under these conditions often involves mean photon path lengths that exceed the pixel size. Using a numerical Monte Carlo model, we have studied the effects of photon scattering in a hemoglobin-bearing model system. We find that photon migration and the resulting wavelength-dependent optical coupling between pixels can complicate the analysis of imaging spectroscopy data. In fact, the wavelength dependence of photon trajectories also alters the distribution of photon exit angles at the tissue surface. We therefore find that the finite optical field of view of an imaging spectrometer can affect the measured spectra in the absence of chromatic aberrations.


Subject(s)
Photons , Retina/anatomy & histology , Spectrum Analysis/methods , Hemoglobins/metabolism , Humans , Models, Theoretical , Retina/metabolism , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL